首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   12篇
  158篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   9篇
  2014年   6篇
  2013年   6篇
  2012年   20篇
  2011年   15篇
  2010年   2篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1990年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   2篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
  1959年   2篇
  1956年   1篇
  1935年   1篇
  1934年   1篇
  1933年   2篇
  1932年   1篇
  1930年   1篇
  1929年   1篇
  1927年   1篇
  1926年   1篇
  1922年   1篇
  1921年   3篇
  1920年   1篇
  1919年   1篇
  1918年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
61.
62.
Eleven of 13 Enterobacteriaceae species tested grew in moist stored wheat, highlighting a potential risk of this energy-saving airtight storage method. When Hansenula anomala was coinoculated, all Enterobacteriaceae species were significantly inhibited after 2 months of storage, six of them to below the detection limit.  相似文献   
63.
64.
Bacteria survive metal stress by several mechanisms and metal binding is one such mechanism which has been screened in the present study to investigate the survival strategies of metal resistant bacteria. The production of siderophores, a metal chelating agent, was detected by chrome azurol S agar assay. The changes in cell wall studied by analysing the peptidoglycan and teichoic acid content indicated an increase in the cell wall content. Evaluation of morphological and physiological alterations like cell size, granularity analysed by SEM and flow cytometry analysis revealed an increase in cell size and granularity respectively. The transformation of phosphates monitored by 31P NMR analysis indicated the presence of inorganic phosphate. Based on the cell wall changes and the 31P NMR analysis, the surface charge of the organism was studied by zeta potential which displayed a difference at pH7.  相似文献   
65.
Phospholipase Cγ isozymes (PLCγ1 and PLCγ2) have a crucial role in the regulation of a variety of cellular functions. Both enzymes have also been implicated in signaling events underlying aberrant cellular responses. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we have recently identified single point mutations in murine PLCγ2 that lead to spontaneous inflammation and autoimmunity. Here we describe further, mechanistic characterization of two gain-of-function mutations, D993G and Y495C, designated as ALI5 and ALI14. The residue Asp-993, mutated in ALI5, is a conserved residue in the catalytic domain of PLC enzymes. Analysis of PLCγ1 and PLCγ2 with point mutations of this residue showed that removal of the negative charge enhanced PLC activity in response to EGF stimulation or activation by Rac. Measurements of PLC activity in vitro and analysis of membrane binding have suggested that ALI5-type mutations facilitate membrane interactions without compromising substrate binding and hydrolysis. The residue mutated in ALI14 (Tyr-495) is within the spPH domain. Replacement of this residue had no effect on folding of the domain and enhanced Rac activation of PLCγ2 without increasing Rac binding. Importantly, the activation of the ALI14-PLCγ2 and corresponding PLCγ1 variants was enhanced in response to EGF stimulation and bypassed the requirement for phosphorylation of critical tyrosine residues. ALI5- and ALI14-type mutations affected basal activity only slightly; however, their combination resulted in a constitutively active PLC. Based on these data, we suggest that each mutation could compromise auto-inhibition in the inactive PLC, facilitating the activation process; in addition, ALI5-type mutations could enhance membrane interaction in the activated state.Phosphoinositide-specific phospholipase C (PLC)2 enzymes, comprising several families (PLCβ, γ, δ, ϵ, η, and ζ), have been established as crucial signaling molecules involved in regulation of a variety of cellular functions (14). PLC-catalyzed formation of the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol, from phosphatidylinositol 4,5-bisphosphate (PIP2), constitutes one of the major cell signaling responses. These second messengers provide a common link from highly specific receptors for hormones, neurotransmitters, antigens, and growth factors to downstream, intracellular targets; thus, they contribute to regulation of biological functions as diverse as cell motility, fertilization, and sensory transduction. Despite this central role for PLC enzymes in signaling networks, the molecular details of their regulation and possible subversion of these regulatory mechanisms in disease remain poorly understood.Of two PLCγ enzymes, PLCγ1 is ubiquitously expressed and appears to regulate a multitude of cellular functions in many tissues. Plcg1-null mice die by embryonic day 9, highlighting the widespread importance of this enzyme (5). PLCγ1 is activated in response to growth factor stimulation; in addition, its function in T-cell responses has been extensively documented (1). PLCγ2, in contrast, is most highly expressed in cells of the hematopoietic system and plays a key role in regulation of the immune response. Consistent with this, Plcg2-null mice display defects in the functioning of B cells, platelets, mast cells, and natural killer cells (6).Both PLCγ enzymes have also been implicated in signaling events underlying aberrant cellular responses. PLCγ1 is critically involved in the regulation of cancer cell motility (711) while PLCγ2 has been implicated in deregulation of the immune responses resembling Btk-dependent X-linked agammaglobulinaemia and SLE disease in humans (1214). It has been suggested that, in cancer cells, PLCγ1 could function as a key, rate-limiting, common component involved in cell motility triggered by several growth factors and integrins (7). In some cancer cells, this increased motility could result from deregulation i.e. higher levels of expression of PLCγ1 (15, 16). The possibility that the activity of PLCγ could be up-regulated due to mutation has not yet been fully investigated in cancer. Previous studies of PLCγ2, however, have demonstrated the first gain-of-function mutation in a PLC molecule in the context of an organism, and shown that, in principle, PLC activity can be greatly enhanced by point mutations (13). Furthermore, this work has demonstrated that such a mutation is linked to a dramatic phenotypic disorder. By using a large scale ENU mutagenesis to discover new immune regulators, several mouse strains were generated with spontaneous autoimmune and inflammatory symptoms; two of these strains harbor a mutation in PLCγ2. In addition to the previously described ALI5 mutation (13) the ALI14 mutation has been identified very recently.3 Strikingly, the well-characterized ALI5 phenotype has shown that the mutation affects many cellular functions deregulated in Plcg2-null mice. Notably, while in Plcg2-null mice such responses are lacking, the ALI5 mutation resulted in their enhancement. In particular, further analyses of the ALI5 mutation in the context of signaling in B-cells have demonstrated that calcium responses to the crosslinking of the B-cell receptor were enhanced and prolonged resulting in enhanced deletion of B cells and autoreactivity (13).The domain organization of PLCγ enzymes is characterized by the insertion of a highly structured region (PLCγ-specific array, γSA) between the two halves of the TIM-barrel catalytic domain common to all PLCs. The γSA comprises a split PH (spPH) domain flanking two tandem SH2 domains and a SH3 domain (1). A distinct regulatory feature of PLCγ enzymes is that their activation is linked to an increase in phosphorylation of specific tyrosine residues (most notably within the γSA) by receptor and non-receptor tyrosine kinases (17, 18). Furthermore, multiple protein-protein interactions (mainly mediated by SH2 domains) also contribute to activation and have an important role in localizing PLCγ into protein complexes with different binding partners, depending on cell type and specific cellular compartments. One mode of activation that is specific for the PLCγ2 isozyme is direct binding to and activation by Rac. The interaction involves the spPH domain, and this activation mechanism does not require tyrosine phosphorylation (19, 20). In molecular terms, changes that lead to PLC activation in response to different input signals, or due to point mutations, are not well understood and require further studies.Here we describe further analysis of the two gain-of-function mutations, ALI5 and ALI14, obtained using ENU mutagenesis. These mutations map to different regions in PLCγ2, and we performed detailed analysis of these regions in both PLCγ isozymes. To characterize the molecular mechanism of gain-of-function, we combined studies in vitro and in different cellular signaling contexts. We have found that ALI5- and ALI14-type point mutations lead, by distinct mechanisms, to an enhancement of responses to a variety of input signals while their combination results in a constitutively active PLC enzyme.  相似文献   
66.
67.
The ability of a predator to discriminate against parasitized prey determines the extent of asymmetrical intraguild predation, which is often crucial for the outcome of biological control. Anagyrus nr. pseudococci (Girault) (Hymenoptera: Encyrtidae), a parasitoid of the citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae), suffers from intraguild predation by coccinellids occurring in the same habitat. The level of intraguild predation on A. nr. pseudococci by Nephus includens (Kirsch) (Coleoptera: Coccinellidae) at different immature stages has been investigated with and without simultaneous offer of extraguild prey. Larvae of A. nr. pseudococci appeared to face increased intraguild predation at early developmental stages, whereas mummification provided adequate protection against the predatory coccinellid. Different predation levels on unparasitized vs. parasitized hosts at various developmental stages in choice assays indicated that N. includens preferences might be determined not solely by palatability of the prey but also by its ability to protect itself.  相似文献   
68.
1 The recent increase in planting of selected willow clones as energy crops for biomass production has resulted in a need to understand the relationship between commonly grown, clonally propagated genotypes and their pests. 2 For the first time, we present a study of the interactions of six willow clones and a previously unconsidered pest, the giant willow aphid Tuberolachnus salignus. 3 Tuberolachnus salignus alatae displayed no preference between the clones, but there was genetic variation in resistance between the clones; Q83 was the most resistant and led to the lowest reproductive performance in the aphid 4 Maternal effects buffered changes in aphid performance. On four tested willow clones fecundity of first generation aphids on the new host clone was intermediate to that of the second generation and that of the clone used to maintain the aphids in culture. 5 In the field, patterns of aphid infestation were highly variable between years, with the duration of attack being up to four times longer in 1999. In both years there was a significant effect of willow clone on the intensity of infestation. However, whereas Orm had the lowest intensity of infestation in the first year, Dasyclados supported a lower population level than other monitored clones in the second year.  相似文献   
69.
Bacteria are not only ubiquitous on earth but can also be incredibly diverse within clean laboratories and reagents. The presence of both living and dead bacteria in laboratory environments and reagents is especially problematic when examining samples with low endogenous content (e.g., skin swabs, tissue biopsies, ice, water, degraded forensic samples or ancient material), where contaminants can outnumber endogenous microorganisms within samples. The contribution of contaminants within high‐throughput studies remains poorly understood because of the relatively low number of contaminant surveys. Here, we examined 144 negative control samples (extraction blank and no‐template amplification controls) collected in both typical molecular laboratories and an ultraclean ancient DNA laboratory over 5 years to characterize long‐term contaminant diversity. We additionally compared the contaminant content within a home‐made silica‐based extraction method, commonly used to analyse low endogenous content samples, with a widely used commercial DNA extraction kit. The contaminant taxonomic profile of the ultraclean ancient DNA laboratory was unique compared to modern molecular biology laboratories, and changed over time according to researcher, month and season. The commercial kit also contained higher microbial diversity and several human‐associated taxa in comparison to the home‐made silica extraction protocol. We recommend a minimum of two strategies to reduce the impacts of laboratory contaminants within low‐biomass metagenomic studies: (a) extraction blank controls should be included and sequenced with every batch of extractions and (b) the contributions of laboratory contamination should be assessed and reported in each high‐throughput metagenomic study.  相似文献   
70.
The diversity of populations of yeast and lactic acid bacteria (LAB) in pig feeds fermented at 10, 15, or 20°C was characterized by rRNA gene sequencing of isolates. The feeds consisted of a cereal grain mix blended with wet wheat distillers' grains (WWDG feed), whey (W feed), or tap water (WAT feed). Fermentation proceeded for 5 days without disturbance, followed by 14 days of daily simulated feed outtakes, in which 80% of the contents were replaced with fresh feed mixtures. In WWDG feed, Pichia galeiformis became the dominant yeast species, independent of the fermentation temperature and feed change. The LAB population was dominated by Pediococcus pentosaceus at the start of the fermentation period. After 3 days, the Lactobacillus plantarum population started to increase in feeds at all temperatures. The diversity of LAB increased after the addition of fresh feed components. In W feed, Kluyveromyces marxianus dominated, but after the feed change, the population diversity increased. With increasing fermentation temperatures, there was a shift toward Pichia membranifaciens as the dominant species. L. plantarum was the most prevalent LAB in W feed. The WAT feed had a diverse microbial flora, and the yeast population changed throughout the whole fermentation period. Pichia anomala was the most prevalent yeast species, with increasing occurrence at higher fermentation temperatures. Pediococcus pentosaceus was the most prevalent LAB, but after the feed change, L. plantarum started to proliferate. The present study demonstrates that the species composition in fermented pig feed may vary considerably, even if viable cell counts indicate stable microbial populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号