首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   90篇
  2022年   15篇
  2021年   20篇
  2020年   15篇
  2019年   9篇
  2018年   27篇
  2017年   17篇
  2016年   30篇
  2015年   35篇
  2014年   44篇
  2013年   48篇
  2012年   49篇
  2011年   62篇
  2010年   41篇
  2009年   28篇
  2008年   36篇
  2007年   41篇
  2006年   29篇
  2005年   22篇
  2004年   25篇
  2003年   24篇
  2002年   17篇
  2001年   22篇
  2000年   19篇
  1999年   12篇
  1998年   5篇
  1997年   7篇
  1996年   9篇
  1993年   6篇
  1992年   12篇
  1991年   10篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   10篇
  1985年   6篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1979年   5篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1974年   5篇
  1972年   5篇
  1970年   8篇
  1969年   5篇
  1968年   7篇
  1966年   7篇
  1965年   5篇
排序方式: 共有887条查询结果,搜索用时 15 毫秒
41.
Journal of Industrial Microbiology & Biotechnology - Extreme environments are a unique source of microorganisms encoding metabolic capacities that remain largely unexplored. In this work, we...  相似文献   
42.
43.
Hydrogen sulfide (H(2)S) is produced by indigenous sulfate-reducing bacteria in the large intestine and represents an environmental insult to the colonic epithelium. Clinical studies have linked the presence of either sulfate-reducing bacteria or H(2)S in the colon with chronic disorders such as ulcerative colitis and colorectal cancer, although at this point, the evidence is circumstantial and underlying mechanisms remain undefined. We showed previously that sulfide at concentrations similar to those found in the human colon induced genomic DNA damage in mammalian cells. The present study addressed the nature of the DNA damage by determining if sulfide is directly genotoxic or if genotoxicity requires cellular metabolism. We also questioned if sulfide genotoxicity is mediated by free radicals and if DNA base oxidation is involved. Naked nuclei from untreated Chinese hamster ovary cells were treated with sulfide; DNA damage was induced by concentrations as low as 1 micromol/L. This damage was effectively quenched by cotreatment with butylhydroxyanisole. Furthermore, sulfide treatment increased the number of oxidized bases recognized by formamidopyrimidine [fapy]-DNA glycosylase. These results confirm the genotoxicity of sulfide and strongly implicate that this genotoxicity is mediated by free radicals. These observations highlight the possible role of sulfide as an environmental insult that, given a predisposing genetic background, may lead to genomic instability or the cumulative mutations characteristic of colorectal cancer.  相似文献   
44.
We investigated the Southern Ocean (SO) prokaryote community structure via zero-radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71–99°E, summer) and Pacific (170–174°W, autumn-winter) sectors of the SO. At higher taxonomic levels (phylum-family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus-zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi- and bathy-abyssopelagic water masses. Common surface bacteria were abundant in several deep-water masses and vice-versa suggesting connectivity between surface and deep-water microbial assemblages. Bacteria from same-sector Antarctic Bottom Water samples showed patchy, high beta-diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep-water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide-scale SO ecosystem microbial modelling.  相似文献   
45.
46.
This study investigated the antimicrobial effects of the ethanolic extract of Brazilian red propolis (BRP) on multispecies biofilms. A seven-day-old subgingival biofilm with 32 species was grown in a Calgary device. Biofilms were treated with BRP (1,600, 800, 400 and 200?μg ml?1) twice a day for 1?min, starting from day 3. Chlorhexidine (0.12%) and dilution-vehicle were used as positive and negative controls, respectively. On day 7, metabolic activity and the microbial composition of the biofilms by DNA-DNA hybridization were determined. The viability data were analyzed by one-way ANOVA followed by Tukey’s post hoc, whereas the microbial composition data were transformed via BOX-COX and analyzed using Dunnett’s post hoc. BRP (1,600?μg ml?1) decreased biofilm metabolic activity by 45%, with no significant difference from chlorhexidine-treated samples. BRP (1,600?μg ml?1) and chlorhexidine significantly reduced levels of 14 bacterial species compared to the vehicle control. Taken together, BRP showed promising antimicrobial properties which may be useful in periodontal disease control.  相似文献   
47.
48.
Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.

Precise spatial and temporal characterization of cytokinin (CK) responses reveals the function of the CK biosynthesis gene ISOPENTENYLTRANSFERASE 3 during nodule development in Medicago truncatula.  相似文献   
49.
50.
Cell metabolism relies on energy transduction usually performed by complex membrane-spanning proteins that couple different chemical processes, e.g. electron and proton transfer in proton-pumps. There is great interest in determining at the molecular level the structural details that control these energy transduction events, particularly those involving multiple electrons and protons, because tight control is required to avoid the production of dangerous reactive intermediates. Tetraheme cytochrome c(3) is a small soluble and monomeric protein that performs a central step in the bioenergetic metabolism of sulfate reducing bacteria, termed "proton-thrusting," linking the oxidation of molecular hydrogen with the reduction of sulfate. The mechano-chemical coupling involved in the transfer of multiple electrons and protons in cytochrome c(3) from Desulfovibrio desulfuricans ATCC 27774 is described using results derived from the microscopic thermodynamic characterization of the redox and acid-base centers involved, crystallographic studies in the oxidized and reduced states of the cytochrome, and theoretical studies of the redox and acid-base transitions. This proton-assisted two-electron step involves very small, localized structural changes that are sufficient to generate the complex network of functional cooperativities leading to energy transduction, while using molecular mechanisms distinct from those established for other Desulfovibrio sp. cytochromes from the same structural family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号