首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   50篇
  国内免费   1篇
  616篇
  2024年   1篇
  2023年   5篇
  2022年   15篇
  2021年   25篇
  2020年   7篇
  2019年   20篇
  2018年   17篇
  2017年   15篇
  2016年   20篇
  2015年   48篇
  2014年   47篇
  2013年   51篇
  2012年   55篇
  2011年   29篇
  2010年   27篇
  2009年   31篇
  2008年   30篇
  2007年   29篇
  2006年   32篇
  2005年   25篇
  2004年   19篇
  2003年   15篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   3篇
  1987年   2篇
  1983年   1篇
  1960年   1篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
  1947年   2篇
  1946年   1篇
  1937年   2篇
  1934年   4篇
  1933年   1篇
  1931年   1篇
  1929年   2篇
  1928年   2篇
  1926年   1篇
  1925年   1篇
排序方式: 共有616条查询结果,搜索用时 15 毫秒
31.
The type IV Waardenburg syndrome (WS4), also referred to as Shah-Waardenburg syndrome or Waardenburg-Hirschsprung disease, is characterised by the association of Waardenburg features (WS, depigmentation and deafness) and the absence of enteric ganglia in the distal part of the intestine (Hirschsprung disease). Mutations in the EDN3, EDNRB, and SOX10 genes have been reported in this syndrome. Recently, a new SOX10 mutation was observed in a girl with a neural crest disorder without evidence of depigmentation, but with severe constipation due to a chronic intestinal pseudo-obstruction and persistence of enteric ganglia. To refine the nosology of WS, we studied patients with typical WS4 (including Hirschsprung disease) or with WS and intestinal pseudo-obstruction. We found three SOX10 mutations, one EDNRB and one EDN3 mutations in patients presenting with the classical form of WS4, and two SOX10 mutations in patients displaying chronic intestinal pseudo-obstruction and WS features. These results show that chronic intestinal pseudo-obstruction may be a manifestation associated with WS, and indicate that aganglionosis is not the only mechanism underlying the intestinal dysfunction of patients with SOX10 mutations.  相似文献   
32.
Pavlovian to instrumental transfer (PIT) is a central factor in how cues influence animal behavior. PIT refers to the capacity of a Pavlovian cue that predicts a reward to elicit or increase a response intended to obtain the same reward. In the present study, using an equine model, we assessed whether PIT occurs in hoofed domestic animals and whether its efficacy can be modulated by temperamental dimensions. To study PIT, horses were submitted to Pavlovian conditioning whereby an auditory–visual stimulus was repeatedly followed by food delivery. Then, horses were submitted to instrumental conditioning during which they learned to touch with their noses an object signaled by the experimenter in order to obtain the same reward. During the PIT test, the Pavlovian conditioned stimulus was presented to the animal in the absence of reward. At the end of the experiment, a battery of behavioral tests was performed on all animals to assess five temperamental dimensions and investigate their relationships with instrumental performance. The results indicate that PIT can be observed in horses and that its efficacy is greatly modulated by individual temperament. Indeed, individuals with a specific pattern of temperamental dimensions (i.e., higher levels of gregariousness, fearfulness, and sensory sensitivity) exhibited the strongest PIT. The demonstration of the existence of PIT in domesticated animals (i.e., horses) is important for the optimization of its use by humans and the improvement of training methods. Moreover, because PIT may be implicated in psychological phenomena, including addictive behaviors, the observation of relationships between specific temperamental dimensions and PIT efficacy may aid in identifying predisposing temperamental attributes.  相似文献   
33.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   
34.
35.

Background

Associations between alcohol consumption and cognitive function are discordant and data focusing on midlife exposure are scarce.

Objective

To estimate the association between midlife alcohol consumption and cognitive performance assessed 13 y later while accounting for comorbidities and diet.

Methods

3,088 French middle-aged adults included in the SU.VI.MAX (1994) study with available neuropsychological evaluation 13 y later. Data on alcohol consumption were obtained from repeated 24h dietary records collected in 1994–1996. Cognitive performance was assessed in 2007–2009 via a battery of 6 neuropsychological tests. A composite score was built as the mean of the standardized individual test scores (mean = 50, SD = 10). ANCOVA were performed to estimate mean differences in cognitive performance and 95% confidence intervals (CI).

Results

In women, abstainers displayed lower cognitive scores than did low-to-moderate alcohol drinkers (1 to 2 drinks/day) (mean difference = −1.77; 95% CI: −3.29, −0.25). In men, heavy drinkers (>3 drinks/day) had higher cognitive scores than did low-to-moderate (1 to 3 drinks/day) (mean difference = 1.05; 95% CI: 0.10, 1.99). However, a lower composite cognitive score was detected in male drinkers consuming ≥90 g/d (≈8 drinks/d). A higher proportion of alcohol intake from beer was also associated with lower cognitive scores. These associations remained significant after adjustment for diet, comorbidities and sociodemographic factors.

Conclusion

In men, heavy but not extreme drinking was associated with higher global cognitive scores. Given the known harmful effects of alcohol even in low doses regarding risk of cancer, the study does not provide a basis for modifying current public health messages.

Trial Registration

ClinicalTrials.gov NCT00272428  相似文献   
36.
Crossovers (COs) generated through meiotic recombination are important for the correct segregation of homologous chromosomes during meiosis. Several models describing the molecular mechanism of meiotic recombination have been proposed. These models differ in the arrangement of heteroduplex DNA (hDNA) in recombination intermediates. Heterologies in hDNA are usually repaired prior to the recovery of recombination products, thereby obscuring information about the arrangement of hDNA. To examine hDNA in meiotic recombination in Drosophila melanogaster, we sought to block hDNA repair by conducting recombination assays in a mutant defective in mismatch repair (MMR). We generated mutations in the MMR gene Msh6 and analyzed recombination between highly polymorphic homologous chromosomes. We found that hDNA often goes unrepaired during meiotic recombination in an Msh6 mutant, leading to high levels of postmeiotic segregation; however, hDNA and gene conversion tracts are frequently discontinuous, with multiple transitions between gene conversion, restoration, and unrepaired hDNA. We suggest that these discontinuities reflect the activity of a short-patch repair system that operates when canonical MMR is defective.  相似文献   
37.
38.
Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD+]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.  相似文献   
39.
Hepatic infections by hepatitis B virus (HBV), hepatitis C virus (HCV) and Plasmodium parasites leading to acute or chronic diseases constitute a global health challenge. The species tropism of these hepatotropic pathogens is restricted to chimpanzees and humans, thus model systems to study their pathological mechanisms are severely limited. Although these pathogens infect hepatocytes, disease pathology is intimately related to the degree and quality of the immune response. As a first step to decipher the immune response to infected hepatocytes, we developed an animal model harboring both a human immune system (HIS) and human hepatocytes (HUHEP) in BALB/c Rag2-/- IL-2Rγc-/- NOD.sirpa uPAtg/tg mice. The extent and kinetics of human hepatocyte engraftment were similar between HUHEP and HIS-HUHEP mice. Transplanted human hepatocytes were polarized and mature in vivo, resulting in 20–50% liver chimerism in these models. Human myeloid and lymphoid cell lineages developed at similar frequencies in HIS and HIS-HUHEP mice, and splenic and hepatic compartments were humanized with mature B cells, NK cells and naïve T cells, as well as monocytes and dendritic cells. Taken together, these results demonstrate that HIS-HUHEP mice can be stably (> 5 months) and robustly engrafted with a humanized immune system and chimeric human liver. This novel HIS-HUHEP model provides a platform to investigate human immune responses against hepatotropic pathogens and to test novel drug strategies or vaccine candidates.  相似文献   
40.
MethodsWe conducted an experimental study comparing portacaval shunt (PCS), total portal vein ligation (PVL), and sham (S) operated rats. Each group were either sacrificed at 6 weeks (early) or 6 months (late). Arterial liver perfusion was studied in vivo using CT, and histopathological changes were noted. Liver mRNA levels were quantified by RT-QPCR for markers of inflammation (Il10, Tnfa), proliferation (Il6st, Mki67, Hgf, Hnf4a), angiogenesis: (Vegfa, Vegfr 1, 2 and 3; Pgf), oxidative stress (Nos2, and 3, Hif1a), and fibrosis (Tgfb). PCS and PVL were compared to the S group.ResultsPeriportal fibrosis and arterial proliferation was observed in late PCS and PVL groups. CT imaging demonstrated increased arterial liver perfusion in the PCS group. RT-QPCR showed increased inflammatory markers in PCS and PVL early groups. Tnfa and Il10 were increased in PCS and PVL late groups respectively. All proliferative markers increased in the PCS, and Hnf4a in the PVL early groups. Mki67 and Hnf4a were increased in the PCS late group. Nos3 was increased in the early and late PCS groups, and Hif1a was decreased in the PVL groups. Markers of angiogenesis were all increased in the early PCS group, and Vegfr3 and Pgf in the late PCS group. Only Vegfr3 was increased in the PVL groups. Tgf was increased in the PCS groups.ConclusionsPortal deprivation in rats induces a sustained increase in intrahepatic markers of inflammation, angiogenesis, proliferation, and fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号