首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2458篇
  免费   231篇
  国内免费   1篇
  2023年   13篇
  2022年   28篇
  2021年   101篇
  2020年   46篇
  2019年   66篇
  2018年   66篇
  2017年   54篇
  2016年   87篇
  2015年   140篇
  2014年   171篇
  2013年   204篇
  2012年   231篇
  2011年   214篇
  2010年   119篇
  2009年   129篇
  2008年   160篇
  2007年   147篇
  2006年   117篇
  2005年   108篇
  2004年   59篇
  2003年   69篇
  2002年   66篇
  2001年   33篇
  2000年   23篇
  1999年   24篇
  1998年   14篇
  1997年   10篇
  1996年   5篇
  1995年   11篇
  1994年   11篇
  1993年   12篇
  1992年   11篇
  1991年   14篇
  1990年   13篇
  1989年   10篇
  1988年   10篇
  1987年   5篇
  1986年   9篇
  1985年   6篇
  1982年   4篇
  1981年   4篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1974年   4篇
  1973年   9篇
  1972年   4篇
  1970年   4篇
  1969年   7篇
  1968年   4篇
排序方式: 共有2690条查询结果,搜索用时 15 毫秒
31.
The tomato—Pseudomonas syringae pv. tomato (Pst)—pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI). AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450) in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.  相似文献   
32.
Xylella fastidiosa subsp. fastidiosa causes Pierce's disease of grapevine (PD) and has been present in California for over a century. A singly introduced genotype spread across the state causing large outbreaks and damaging the grapevine industry. This study presents 122 X. fastidiosa subsp. fastidiosa genomes from symptomatic grapevines, and explores pathogen genetic diversity associated with PD in California. A total of 5218 single-nucleotide polymorphisms (SNPs) were found in the dataset. Strong population genetic structure was found; isolates split into five genetic clusters divided into two lineages. The core/soft-core genome constituted 41.2% of the total genome, emphasizing the high genetic variability of X. fastidiosa genomes. An ecological niche model was performed to estimate the environmental niche of the pathogen within California and to identify key climatic factors involved in dispersal. A landscape genomic approach was undertaken aiming to link local adaptation to climatic factors. A total of 18 non-synonymous polymorphisms found to be under selective pressures were correlated with at least one environmental variable highlighting the role of temperature, precipitation and elevation on X. fastidiosa adaptation to grapevines in California. Finally, the contribution to virulence of three of the genes under positive selective pressure and of one recombinant gene was studied by reverse genetics.  相似文献   
33.
Passive immunity (PI), acquired through colostrum intake, is essential for piglet protection against pathogens. Maternally-derived antibodies (MDAs) can decrease the transmission of pathogens between individuals by reducing shedding from infected animals and/or susceptibility of naïve animals. Only a limited number of studies, however, have been carried out to quantify the level of protection conferred by PI in terms of transmission. In the present study, an original modeling framework was designed to estimate parameters governing the transmission of infectious agents in the presence and absence of PI. This epidemiological model accounts for the distribution of PI duration and two different forces of infection depending on the serological status of animals after colostrum intake. A Bayesian approach (Metropolis-Hastings algorithm) was used for parameter estimation. The impact of PI on hepatitis E virus transmission in piglets was investigated using longitudinal serological data from six pig farms. A strong impact of PI was highlighted, the efficiency of transmission being on average 13 times lower in piglets with maternally-derived antibodies than in fully susceptible animals (range: 5–21). Median infection-free survival ages, based on herd-specific estimates, ranged between 8.7 and 13.8 weeks in all but one herd. Indeed, this herd exhibited a different profile with a relatively low prevalence of infected pigs (50% at slaughter age) despite the similar proportions of passively immune individuals after colostrum intake. These results suggest that the age at HEV infection is not strictly dependent upon the proportion of piglets with PI but is also linked to farm-specific husbandry (mingling of piglets after weaning) and hygiene practices. The original methodology developed here, using population-based longitudinal serological data, was able to demonstrate the relative impact of MDAs on the transmission of infectious agents.  相似文献   
34.
The chemical composition of 44 leaf oil samples of Laggera pterodonta (DC.) Sch.Bip. ex Oliv. (Asteraceae) from Côte d'Ivoire was investigated, using combination of chromatographic (GC‐FID) and spectroscopic (GC/MS, 13C‐NMR) techniques. Two oil samples chosen according to their chromatographic profiles were submitted to column chromatography and all fractions of CC were analyzed by GC‐FID, GC/MS and 13C‐NMR. In total, 83 components accounting for 96.5 to 99.4 % of the whole chemical composition were identified. Significant variations were observed within terpene classes: monoterpene hydrocarbons (0.4–22.7 %), oxygenated monoterpenes (32.9–54.9 %), sesquiterpene hydrocarbons (18.6–38.3 %) and oxygenated sesquiterpenes (3.5–38.4 %). Thus, the 44 compositions were subjected to hierarchical cluster analysis (HCA) and principal component analysis (PCA). Two groups were differentiated according to their composition. All the samples contained 2,5‐dimethoxy‐p‐cymene, α‐humulene and (E)‐β‐caryophyllene among the main components. Other components were present at appreciable contents and allowed differentiation of two groups: sabinene and germacrene D for Group I; 10‐epiγ‐eudesmol and eudesm‐7(11)‐en‐4α‐ol for Group II. All the samples collected in Eastern Côte d'Ivoire constituted Group I, while samples collected in the Central area of the country constituted Group II.  相似文献   
35.
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.  相似文献   
36.
Understanding how ecological traits have changed over evolutionary time is a fundamental question in biology. Specifically, the extent to which more closely related organisms share similar ecological preferences due to phylogenetic conservation – or if they are forced apart by competition – is still debated. Here, we explored the co-occurrence patterns of freshwater cyanobacteria at the sub-genus level to investigate whether more closely related taxa share more similar niches and to what extent these niches were defined by abiotic or biotic variables. We used deep 16S rRNA gene amplicon sequencing and measured several abiotic environmental parameters (nutrients, temperature, etc.) in water samples collected over time and space in Furnas Reservoir, Brazil. We found that relatively more closely related Synechococcus (in the continuous range of 93%–100% nucleotide identity in 16S) had an increased tendency to co-occur with one another (i.e. had similar realized niches). This tendency could not be easily explained by shared preferences for measured abiotic niche dimensions. Thus, commonly measured abiotic parameters might not be sufficient to characterize, nor to predict community assembly or dynamics. Rather, co-occurrence between Synechococcus and the surrounding community (whether or not they represent true biological interactions) may be a more sensitive measure of realized niches. Overall, our results suggest that realized niches are phylogenetically conserved, at least at the sub-genus level and at the resolution of the 16S marker. Determining how these results generalize to other genera and at finer genetic resolution merits further investigation.  相似文献   
37.
Neisseria meningitidis (meningococcus) is a Gram‐negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Interaction with both peripheral and cerebral microvascular endothelial cells is at the heart of meningococcal pathogenesis. During the last two decades, an essential role for meningococcal type IV pili in vascular colonisation and disease progression has been unravelled. This review summarises 20 years of research on meningococcal type IV pilus‐dependent virulence mechanisms, up to the identification of promising anti‐virulence compounds that target type IV pili.  相似文献   
38.
39.
The role of herbivorous fish in threatening marine forests of temperate seas has been generally overlooked. Only recently, the scientific community has highlighted that high fish herbivory can lead to regime shifts from canopy‐forming algae to less complex turf communities. Here, we present an innovative herbivorous fish deterrent device (DeFish), which can be used for conservation and restoration of marine forests. Compared to most traditional fish exclusion systems, such as cages, the DeFish system does not need regular cleaning and maintenance, making it more cost‐efficient. Resistance of DeFish was tested by installing prototypes at different depths in the French Riviera and in Montenegro: more than 60% of the devices endured several years without maintenance, even if most of them were slightly damaged in the exposed site in Montenegro. The efficacy of DeFish in limiting fish herbivory was tested by an exclusion experiment on Cystoseira amentacea in the French Riviera. In a few months, the number of fish bite marks on the seaweed was decreased, causing a consequent increase in algal length. The device here presented has been conceived for Mediterranean canopy‐forming algae, but the same concept can be applied to other species vulnerable to fish herbivory, such as kelps or seagrasses. In particular, the DeFish design could be improved using more robust and biodegradable materials. Innovative engineering systems, such as DeFish, are expected to become useful tools in the conservation and restoration of marine forests, to complement other practices including active reforestation, herbivore regulation, and regular monitoring of their status.  相似文献   
40.
Climate change is altering phenology; however, the magnitude of this change varies among taxa. Compared with phenological mismatch between plants and herbivores, synchronization due to climate has been less explored, despite its potential implications for trophic interactions. The earlier budburst induced by defoliation is a phenological strategy for plants against herbivores. Here, we tested whether warming can counteract defoliation‐induced mismatch by increasing herbivore‐plant phenological synchrony. We compared the larval phenology of spruce budworm and budburst in balsam fir, black spruce, and white spruce saplings subjected to defoliation in a controlled environment at temperatures of 12, 17, and 22°C. Budburst in defoliated saplings occurred 6–24 days earlier than in the controls, thus mismatching needle development from larval feeding. This mismatch decreased to only 3–7 days, however, when temperatures warmed by 5 and 10°C, leading to a resynchronization of the host with spruce budworm larvae. The increasing synchrony under warming counteracts the defoliation‐induced mismatch, disrupting trophic interactions and energy flow between forest ecosystem and insect populations. Our results suggest that the predicted warming may improve food quality and provide better growth conditions for larval development, thus promoting longer or more intense insect outbreaks in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号