首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5255篇
  免费   454篇
  5709篇
  2023年   25篇
  2022年   49篇
  2021年   92篇
  2020年   56篇
  2019年   66篇
  2018年   82篇
  2017年   77篇
  2016年   141篇
  2015年   241篇
  2014年   255篇
  2013年   277篇
  2012年   371篇
  2011年   341篇
  2010年   225篇
  2009年   192篇
  2008年   263篇
  2007年   297篇
  2006年   239篇
  2005年   250篇
  2004年   213篇
  2003年   213篇
  2002年   206篇
  2001年   104篇
  2000年   122篇
  1999年   110篇
  1998年   56篇
  1997年   60篇
  1996年   58篇
  1995年   50篇
  1994年   54篇
  1993年   47篇
  1992年   68篇
  1991年   64篇
  1990年   70篇
  1989年   52篇
  1988年   41篇
  1987年   46篇
  1986年   58篇
  1985年   52篇
  1984年   36篇
  1983年   32篇
  1982年   31篇
  1981年   27篇
  1979年   29篇
  1978年   21篇
  1976年   20篇
  1975年   18篇
  1973年   23篇
  1972年   22篇
  1970年   19篇
排序方式: 共有5709条查询结果,搜索用时 15 毫秒
141.
Abstract The evolution of reproductive isolation among populations is often the result of selective forces. Among those, parasites exert strong selection on host populations and can thus also potentially drive reproductive isolation. This hypothesis has yet to be explicitly tested, and here we set up a multigenerational coevolution experiment to explore this possibility. Five lines of Tribolium castaneum were allowed to coevolve with their natural parasite, Nosema whitei; five paired lines of identical origin were maintained in the absence of parasites. After 17 generations, we measured resistance within and reproductive isolation between all lines. Host lines from the coevolution treatment had considerably higher levels of resistance against N. whitei than their paired host lines, which were maintained in the absence of parasites. Reproductive isolation was greater in the coevolved selection regime and correlated with phenotypic differentiation in parasite resistance between coevolved host lines. This suggests the presence of a selection-driven genetic correlation between offspring number and resistance. Our results show that parasites can be a driving force in the evolution of reproductive isolation and thus potentially speciation.  相似文献   
142.
Proteogenomic approaches have gained increasing popularity, however it is still difficult to integrate mass spectrometry identifications with genomic data due to differing data formats. To address this difficulty, we introduce iPiG as a tool for the integration of peptide identifications from mass spectrometry experiments into existing genome browser visualizations. Thereby, the concurrent analysis of proteomic and genomic data is simplified and proteomic results can directly be compared to genomic data. iPiG is freely available from https://sourceforge.net/projects/ipig/. It is implemented in Java and can be run as a stand-alone tool with a graphical user-interface or integrated into existing workflows. Supplementary data are available at PLOS ONE online.  相似文献   
143.
Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide–MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method’s ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at . Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
144.
This study investigates the presence and the localization of acid phosphatase and ATPase in the salivary glands of Rhipicephalus (Boophilus) microplus female ticks during feeding. Semi-engorged females showed a larger amount of acid phosphatase compared to those at beginning of feeding, localized mainly in the apical portion of the secretory cells, and in the basal labyrinth of the interstitial cells. Ultrastructural observations also demonstrated its presence in secretion granules and inside some nuclei of secretory cells at beginning of feeding. Acid phosphatase in a free form probably has a hemolymph and/or ribosomal origin and participates in salivary gland secretion control. ATPase was detected in basal membrane of all types of acini and/or in the cytoplasm of the secretory cells at both feeding stages. The enzyme activities found strongly suggests that cell death by apoptosis occurs during the degenerative process.  相似文献   
145.
NOD2 mutations are associated with the development of granulomatous inflammatory diseases, such as early-onset sarcoidosis (EOS), Blau syndrome (BS) and Crohn's disease (CD). As a pathogen-recognition molecule for muramyl dipeptide (MDP), NOD2 controls both innate and adaptive immune responses, through the regulation of cytokines, chemokines and antimicrobial peptides production. Notably, Nod2-deficient mice experienced increased susceptibility to enteric infection and to antigen-specific colitis. Furthermore, mutant mice bearing the orthologue of the major CD-associated NOD23020ins allele showed increased susceptibility to DSS-induced colitis. However, many questions remain open. (i) Is antimicrobial function deficiency sufficient to initiate the development of CD? (ii) How impaired and mutant NOD2 might lead to increased adaptive immune response? (iii) How do the other disease-associated NOD2 mutations contribute to the development of chronic intestinal inflammation? Whatever the relevant mechanism(s), it provides a casual link between abnormal bacterial sensing and development of inflammatory disorders. Further work should now focus on restoring abnormal NOD2 function by modulating antimicrobial function and regulatory mechanisms of the adaptive immune system.  相似文献   
146.
In vertebrates, the immune system consists of two arms of different characteristics: the innate and the acquired immune response. Parasites that are only shortly exposed to the immune system are most efficiently attacked by fast, constitutive innate immune mechanisms. Here, we experimentally selected within four fish families for high innate resistance versus susceptibility of three-spined sticklebacks (Gasterosteus aculeatus) against infection with the eye-fluke (Diplostomum pseudospathacaeum), a parasite whose metacercariae are protected from the immune system within the eye lens. We predicted that in families with high susceptibility, the adaptive immune system would be upregulated when challenged with infection. In accordance, we found that MHC class IIB expression is increased by approximately 50% in those lines selected for higher parasite load (i.e. low innate response). This suggests extensive genetic correlations between innate and adaptive immune system and/or crosstalk between both lines of defense. An efficient, specific innate immune response might reduce overall activation of the immune system and potentially alleviate associated effects of immunopathology.  相似文献   
147.
We have developed a specific and efficient method for complete removal of polyhistidine purification tags (HisTags) from the N-termini of target proteins. The method is based on the use of the aminopeptidase dipeptidyl peptidase I (DPPI), either alone or in combination with glutamine cyclotransferase (GCT) and pyroglutamyl aminopeptidase (PGAP). In both cases, the HisTag is cleaved off by DPPI, which catalyzes a stepwise excision of a wide range of dipeptides from the N-terminus of a peptide chain. Some sequences, however, are resistant to DPPI cleavage and a number of mature proteins have nonsubstrate N-termini which protects them against digestion. For such proteins, HisTags composed of an even number of residues can be cleaved off by treatment with DPPI alone. When the target protein is unprotected against DPPI, a blocking group is generated enzymatically from a glutamine residue inserted between the HisTag and the target protein. A protein with a HisTag-Gln extension is incubated with both DPPI and GCT. As above, the polyhistidine sequence is cleaved off by DPPI, but when the glutamine residue appears in the N-terminus, it is immediately converted into a pyroglutamyl residue by an excess of GCT and further DPPI digestion is prevented. The desired sequence is finally obtained by excision of the pyroglutamyl residue with PGAP. All the enzymes employed can bind to immobilized metal affinity chromatography (IMAC) matrices, and in this paper we demonstrate a simple and highly effective process combining IMAC purification of His-tagged proteins, our aminopeptidase-based method for specific excision of HisTags and use of subtractive IMAC for removing processing enzymes. Typical recoveries were 75-90% for the enzymatic processing and subtractive IMAC. The integrated process holds promises for use in large-scale production of pharmaceutical proteins because of a simple overall design, use of robust and inexpensive matrices, and use of enzymes of either recombinant or plant origin.  相似文献   
148.
Polyploidy is common in higher plants, and speciation in polyploid complexes is usually the result of reticulate evolution. We examined variation in nuclear AFLP fingerprints, nuclear isozymes, and hypervariable plastid DNA loci to describe speciation patterns and species relationships in the Dactylorhiza incarnata/maculata polyploid complex (marsh orchids; Orchidaceae) in Greece. Several endemic taxa with restricted distribution have been described from this area, and to propose meaningful conservation priorities, detailed relationships need to be known. We identified four independently derived allopolyploid lineages, which is a pattern poorly correlated with prevailing taxonomy. Three lineages were composed of populations restricted to small areas and may be of recent origins from extant parental lineages. One lineage with wide distribution in northern Greece was characterized by several unique plastid haplotypes that were phylogenetically related and evidently older. The D. incarnata/maculata polyploid complex in Greece has high levels of genetic diversity at the polyploid level. This diversity has accumulated over a long time and may include genetic variants originating from now extinct parental populations. Our data also indicate that the Balkans may have constituted an important refuge from which northern European Dactylorhiza were recruited after the Weichselian ice age.  相似文献   
149.
Stratospheric ozone depletion is most pronounced at high latitudes, and the concurring increased UV-B radiation might adversely affect plants from polar areas. However, vascular plants may protect themselves against UV-B radiation by UV-absorbing compounds located in the epidermis. In this 3-year study, epidermal UV-B (max 314 nm) and UV-A (max 366 nm) screening was assessed using a fluorescence method in 12 vascular species growing in their natural environment at Svalbard. The potential for acclimation to increased radiation was studied with artificially increased UV-B, simulating 11% ozone depletion. Open-top chambers simulated an increase in temperature of 2–3°C in addition to the UV-B manipulation. Adaxial epidermal UV-B transmittance varied between 1.6 and 11.4%. Artificially increased UV-B radiation and temperature did not consistently influence the epidermal UV-B transmittance in any of the measured species, suggesting that they may not have the potential to increase their epidermal screening, or that the screening is already high enough at the applied UV-B level. We propose that environmental factors other than UV-B radiation may influence epidermal UV-B screening.  相似文献   
150.
Cytoplasmic Ca(2+) ([Ca(2+)](i)) and membrane potential changes were measured in clonal pancreatic beta cells using a fluorimetric imaging plate reader (FLIPR). KCl (30 mM) produced a fast membrane depolarization immediately followed by increase of [Ca(2+)](i) in BRIN-BD11 cells. l-Alanine (10 mM) but not l-arginine (10 mM) mimicked the KCl profile and also produced a fast membrane depolarization and elevation of [Ca(2+)](i). Conversely, a rise in glucose from 5.6 mM to 11.1 or 16.7 mM induced rapid membrane depolarization, followed by a slower and delayed increase of [Ca(2+)](i). GLP-1 (20 nM) did not affect membrane potential or [Ca(2+)](i). In contrast, acetylcholine (ACh, 100 microM) induced fast membrane depolarization immediately followed by a modest [Ca(2+)](i) increase. When extracellular Ca(2+) was buffered with EGTA, ACh mobilized intracellular calcium stores and the [Ca(2+)](i) increase was reduced by 2-aminoethoxydiphenyl borate but not by dantrolene, indicating the involvement of inositol triphosphate receptors (InsP(3)R). It is concluded that membrane depolarization of beta cells by glucose stimulation is not immediately followed by elevation of [Ca(2+)](i) and other metabolic events are involved in glucose induced stimulus-secretion coupling. It is also suggested that ACh mobilizes intracellular Ca(2+) through store operated InsP(3)R.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号