首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3292篇
  免费   377篇
  国内免费   2篇
  3671篇
  2023年   19篇
  2022年   37篇
  2021年   77篇
  2020年   35篇
  2019年   51篇
  2018年   62篇
  2017年   54篇
  2016年   106篇
  2015年   185篇
  2014年   201篇
  2013年   182篇
  2012年   265篇
  2011年   220篇
  2010年   149篇
  2009年   129篇
  2008年   174篇
  2007年   199篇
  2006年   175篇
  2005年   182篇
  2004年   159篇
  2003年   131篇
  2002年   143篇
  2001年   37篇
  2000年   43篇
  1999年   43篇
  1998年   32篇
  1997年   21篇
  1996年   32篇
  1995年   22篇
  1994年   28篇
  1993年   19篇
  1992年   27篇
  1991年   31篇
  1990年   29篇
  1989年   26篇
  1988年   23篇
  1987年   22篇
  1986年   25篇
  1985年   21篇
  1984年   24篇
  1983年   22篇
  1982年   10篇
  1981年   21篇
  1979年   17篇
  1978年   13篇
  1976年   11篇
  1973年   9篇
  1969年   14篇
  1968年   9篇
  1966年   9篇
排序方式: 共有3671条查询结果,搜索用时 15 毫秒
31.
Bioluminescence imaging is widely used for optical cell tracking approaches. However, reliable and quantitative bioluminescence of transplanted cells in the brain is highly challenging. In this study we established a new bioluminescence imaging protocol dedicated for neuroimaging, which increases sensitivity especially for noninvasive tracking of brain cell grafts. Different D-Luciferin concentrations (15, 150, 300 and 750 mg/kg), injection routes (iv, ip, sc), types of anesthesia (Isoflurane, Ketamine/Xylazine, Pentobarbital) and timing of injection were compared using DCX-Luc transgenic mice for brain specific bioluminescence. Luciferase kinetics was quantitatively evaluated for maximal photon emission, total photon emission and time-to-peak. Photon emission followed a D-Luciferin dose-dependent relation without saturation, but with delay in time-to-peak increasing for increasing concentrations. The comparison of intravenous, subcutaneous and intraperitoneal substrate injection reflects expected pharmacokinetics with fastest and highest photon emission for intravenous administration. Ketamine/Xylazine and Pentobarbital anesthesia showed no significant beneficial effect on maximal photon emission. However, a strong difference in outcome was observed by injecting the substrate pre Isoflurane anesthesia. This protocol optimization for brain specific bioluminescence imaging comprises injection of 300 mg/kg D-Luciferin pre Isoflurane anesthesia as an efficient and stable method with a signal gain of approx. 200% (compared to 150 mg/kg post Isoflurane). Gain in sensitivity by the novel imaging protocol was quantitatively assessed by signal-to-noise calculations of luciferase-expressing neural stem cells grafted into mouse brains (transplantation of 3,000–300,000 cells). The optimized imaging protocol lowered the detection limit from 6,000 to 3,000 cells by a gain in signal-to-noise ratio.  相似文献   
32.
1. The effects of the inclusion of thioacetamide in the diet on the properties of rat liver nuclei were studied both in adolescent rats, in which the parenchymal cells contain diploid nuclei, and in young adult rats, with a high proportion of tetraploid nuclei. 2. These investigations included a survey of the sedimentation properties of the nuclei, the nuclear volumes, content of DNA, RNA and protein, the incorporation in vivo of [(3)H]thymidine into DNA and [(14)C]orotate into RNA, and measurements of the activity of RNA polymerase and ribonuclease. These studies were conducted on nuclei fractionated by zonal centrifugation. 3. In both groups of animals, exposure to thioacetamide produced large numbers of nuclei that were abnormal in their chemical composition and enzymic activity. The changes were complex as regards both the types of nuclei that were affected and in their variation with time. 4. In adolescent rats two waves of synthesis of DNA and RNA were observed, one at 3 days and the other after 2 weeks of treatment. The first decline in the incorporations into both DNA and RNA coincided with a decrease in the pool sizes of some of the precursors. The activity of RNA polymerase was not substantially altered. A marked increase in the content of protein was observed before the first wave of synthesis. The normal progressive increase in tetraploid nuclei was prevented. 5. In young adult rats two waves of DNA synthesis were detected. Each was preceded by a large increase in the amount of protein per nucleus but was not accompanied by increased RNA synthesis. After 4 weeks of treatment, the diploid stromal nuclei appeared mainly unaffected and large numbers of tetraploid nuclei with a greatly increased quantity of protein were observed.  相似文献   
33.
Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser22/Ser23, reduces myofilament Ca2+ sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser22/Ser23 remains to be established. To determine the role of cTnI phosphorylation at Ser22/Ser23 in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser22/Ser23 are substituted by nonphosphorylatable Ala (cTnI-Ala2). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser22/Ser23 and decreased the Ca2+ sensitivity of force. In contrast, PKD had no effect on the Ca2+ sensitivity of force in myocardium from cTnI-Ala2 mice, in which Ser22/Ser23 were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala2 mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser273, Ser282, and Ser302, and revealed that PKD phosphorylates only Ser302. Furthermore, PKD phosphorylated Ser302 selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala2 mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca2+ sensitivity through cTnI phosphorylation at Ser22/Ser23 but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser302, which may mediate the latter effect.  相似文献   
34.
RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent on an intact RING domain, as RING deficient mutants fail to drive polyubiquitination in vitro and are stabilized in vivo. Immunopurification and tandem mass spectrometry enabled the identification of several putative Rfp2 interacting proteins localized to the endoplasmic reticulum (ER), including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). Importantly, we also show that Rfp2 regulates the degradation of the known ER proteolytic substrate CD3-delta, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein), establishing Rfp2 as a novel E3 ligase involved in ERAD. Finally, we show that Rfp2 contains a C-terminal transmembrane domain indispensable for its localization to the ER and that Rfp2 colocalizes with several ER-resident proteins as analyzed by high-resolution immunostaining. In summary, these data are all consistent with a function for Rfp2 as an ERAD E3 ubiquitin ligase.  相似文献   
35.
NAO is a natural water soluble antioxidant that was isolated and purified from spinach leaves. Using HPLC, NMR, and CMR spectroscopy, the main components were identified as flavonoids and p-coumaric acid derivatives. The NAO was found to be a very effective antioxidant in several in vivo and in vitro biological systems. In the present study, the antioxidant activity of the novel antioxidant glucurinated flavonoid (GF) isolated and characterized from NAO, is compared to well-known antioxidants. In addition, the direct free radical scavenging properties of the purified component GF were studied using the electron spin resonance (ESR) technique. GF and NAO were found to be superior to EGCG and NAC and to the Vitamin E homologue Trolox in inhibiting reactive oxygen species (ROS) formation in the autooxidation system of linoleic acid and in fibroblasts exposed to metal oxidation. GF and NAO were found to inhibit the ESR signal intensity of DMPO-O(2) radical formation during the riboflavin photodynamic reaction. 10 mM GF caused approximately 90% inhibition in the intensity of the ESR signal, while NAO at a concentration of 60 microg/ml caused an inhibition of about 50%. Using the Fenton reaction, GF and NAO were found to inhibit DMPO-OH radical formation. A concentration of 2 mM GF caused a 70% inhibition in the intensity of the DMPO-OH radical ESR signal, while propyl gallate at the same concentration caused only 50% inhibition. Furthermore, both GF and NAO also inhibited the (1)O(2) dependent TEMPO radical generated in the photoradiation TPPS4 system. About 80% inhibition was obtained by 4 mM GF. The results obtained indicate that the natural antioxidants derived from spinach may directly affect the scavenging of ROS and, as a consequence, may be considered as effective sources for combating oxidative damage.  相似文献   
36.
37.
Plants use the family of phytochrome photoreceptors to sense their light environment in the red/far-red region of the spectrum. Phytochrome A (phyA) is the primary photoreceptor that regulates germination and early seedling development. This phytochrome mediates seedling de-etiolation for the developmental transition from heterotrophic to photoauxotrophic growth. High intensity far-red light provides a way to specifically assess the role of phyA in this process and was used to isolate phyA-signaling intermediates. fhy1 and pat3 (renamed fhy1-3) are independently isolated alleles of a gene encoding a phyA signal transduction component. FHY1 is a small 24 kDa protein that shows no homology to known functional motifs, besides a small conserved septin-related domain at the C-terminus, a putative nuclear localization signal (NLS) and a putative nuclear exclusion signal (NES). Here we demonstrate that the septin-related domain is important for FHY1 to transmit phyA signals. Moreover, the putative NLS and NES of FHY1 are indeed involved in its nuclear localization and exclusion. Nuclear localization of FHY1 is needed for it to execute responses downstream of phyA. Together with the results from global expression analysis, our findings point to an important role of FHY1 in phyA signaling through its nuclear translocation and induction of gene expression.  相似文献   
38.

Background

In humans and mice naturally occurring CD4+CD25+ regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.

Principal Findings

DNA-Microarray analyses of human as well as murine conventional CD4+ Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice and performing FoxP3 ChIP-Seq experiments using activated human T lymphocytes, we show that the expression and maturation of miR-155 seem to be not necessarily regulated by FoxP3. In order to address the functional relevance of elevated miR-155 levels, we transfected miR-155 inhibitors or mature miR-155 RNAs into freshly-isolated human and mouse primary CD4+ Th cells and nTregs and investigated the resulting phenotype in nTreg suppression assays. Whereas miR-155 inhibition in conventional CD4+ Th cells strengthened nTreg cell-mediated suppression, overexpression of mature miR-155 rendered these cells unresponsive to nTreg cell-mediated suppression.

Conclusion

Investigation of FoxP3 downstream targets, certainly of bound and regulated miRNAs revealed the associated function between the master regulator FoxP3 and miRNAs as regulators itself. miR-155 is shown to be crucially involved in nTreg cell mediated tolerance by regulating the susceptibility of conventional human as well as murine CD4+ Th cells to nTreg cell-mediated suppression.  相似文献   
39.
Time-dependent effects of lead (Pb) toxicity were studied in Algerian mice (Mus spretus) treated with Pb acetate via drinking water (1 g Pb acetate/L) for different periods of exposure (15, 45, and 90 d). End points included the determination of hepatic Pb concentration and the assessment of some morphophysiological, biochemical and cytogenetical parameters. A control group receiving distilled water was also monitored for comparative purposes. Hepatic Pb accumulation increased with the time of exposure and was significantly higher in treated mice when compared to controls. In association with significant body mass loss in Pb-exposed mice, for 15 and 45 d, a significant increase in the relative spleen mass was observed after 45 d of intoxication. Pb-exposed mice also showed significant decreases in red blood cells, hematocrit, and mean corpuscular hemoglobin. On the contrary, changes in plasma transferases (aspartate aminotransferase and alanine aminotransferase) and hepatic superoxide dismutase activities did not reach statistical significance. A significant increase in the frequency of micronucleated polychromatic bone marrow erythrocytes was also found in the 90-d-exposed mice, compared to nontreated mice and the other exposed groups. Exposure to Pb acetate resulted also in a slight time-dependent decrease of the polychromatic-normochromatic ratio. These results support the concept that a long-term chronic exposure to Pb induced alterations upon some morphophysiological and genetic paramaters in Algerian mice.  相似文献   
40.
Capsaicin has known health beneficial and therapeutic properties. It is also able to enhance the permeability of drugs across epithelial tissues. Unfortunately, due to its pungency the oral administration of capsaicin is limited. To this end, we assessed the effect of nanoencapsulation of capsaicin, under the hypothesis that this would reduce its pungency. Core-shell nanocapsules with an oily core and stabilized with phospholipids were used. This system was used with or without chitosan coating. In this work, we investigated the in vitro release behavior of capsaicin-loaded formulations in different physiological media (including simulated saliva fluid). We also evaluated the influence of encapsulation of capsaicin on the cell viability of buccal cells (TR146). To study the changes in pungency after encapsulation we carried out a sensory analysis with a trained panel of 24 students. The in vitro release study showed that the systems discharged capsaicin slowly in a monotonic manner and that the chitosan coating had an effect on the release profile. The cytotoxic response of TR146 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, was reduced following its encapsulation. The sensory study revealed that a chitosan coating results in a lower threshold of perception of the formulation. The nanoencapsulation of capsaicin resulted in attenuation of the sensation of pungency significantly. However, the presence of a chitosan shell around the nanoformulations did not mask the pungency, when compared with uncoated systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号