首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2427篇
  免费   267篇
  2694篇
  2023年   19篇
  2022年   30篇
  2021年   65篇
  2020年   31篇
  2019年   43篇
  2018年   51篇
  2017年   42篇
  2016年   84篇
  2015年   159篇
  2014年   159篇
  2013年   151篇
  2012年   228篇
  2011年   185篇
  2010年   120篇
  2009年   102篇
  2008年   135篇
  2007年   157篇
  2006年   129篇
  2005年   139篇
  2004年   106篇
  2003年   97篇
  2002年   115篇
  2001年   21篇
  2000年   15篇
  1999年   20篇
  1998年   23篇
  1997年   14篇
  1996年   23篇
  1995年   12篇
  1994年   16篇
  1993年   10篇
  1992年   9篇
  1991年   7篇
  1990年   10篇
  1989年   5篇
  1988年   9篇
  1987年   10篇
  1986年   8篇
  1985年   13篇
  1984年   17篇
  1983年   12篇
  1982年   7篇
  1981年   8篇
  1979年   8篇
  1978年   5篇
  1974年   4篇
  1973年   7篇
  1970年   4篇
  1969年   7篇
  1962年   5篇
排序方式: 共有2694条查询结果,搜索用时 15 毫秒
101.
Over the last three decades, climate abnormalities have been reported to be involved in biodiversity decline by affecting population dynamics. A growing number of studies have shown that the North Atlantic Oscillation (NAO) influences the demographic parameters of a wide range of plant and animal taxa in different ways. Life history theory could help to understand these different demographic responses to the NAO. Indeed, theory states that the impact of weather variation on a species’ demographic traits should depend on its position along the fast–slow continuum. In particular, it is expected that NAO would have a higher impact on recruitment than on adult survival in slow species, while the opposite pattern is expected occur in fast species. To test these predictions, we used long‐term capture–recapture datasets (more than 15,000 individuals marked from 1965 to 2015) on different surveyed populations of three amphibian species in Western Europe: Triturus cristatus, Bombina variegata, and Salamandra salamandra. Despite substantial intraspecific variation, our study revealed that these three species differ in their position on a slow–fast gradient of pace of life. Our results also suggest that the differences in life history tactics influence amphibian responses to NAO fluctuations: Adult survival was most affected by the NAO in the species with the fastest pace of life (Tcristatus), whereas recruitment was most impacted in species with a slower pace of life (Bvariegata and Ssalamandra). In the context of climate change, our findings suggest that the capacity of organisms to deal with future changes in NAO values could be closely linked to their position on the fast–slow continuum.  相似文献   
102.
Whether to reproduce once or multiple times (semelparity vs. iteroparity) is a major life-history decision that organisms have to take. Mode of parity is usually considered a species characteristic. However, recent models suggested that population properties or condition-dependent fitness payoffs could help to maintain both life-history tactics within populations. In arthropods, semelparity was also hypothesised to be a critical pre-adaptation for the evolution of maternal care, semelparous females being predicted to provide more care due to the absence of costs on future reproduction. The aim of this study was to characterize potential fitness payoffs and levels of maternal care in semel- and itero-parous females of the European earwig Forficula auricularia. Based on 15 traits measured in 494 females and their nymphs, our results revealed that iteroparous females laid their first clutch earlier, had more eggs in their first clutch, gained more weight during the 2 weeks following hatching of the first clutch, but produced eggs that developed more slowly than semelparous females. Among iteroparous females, the sizes of first and second clutches were significantly and positively correlated, indicating no investment trade-off between reproductive events. Iteroparous females also provided more food than semelparous ones, a result contrasting with predictions that iteroparity is incompatible with the evolution of maternal care. Finally, a controlled breeding experiment reported full mating compatibility among offspring from females of the two modes of parity, confirming that both types of females belong to one single species. Overall, these results indicate that alternative modes of parity represent coexisting life-history tactics that are likely to be condition-dependent and associated with offspring development and specific levels of maternal care in earwigs.  相似文献   
103.
The presence of two phenotypes in a single species is a widespread phenomenon, also observed in European eel (Anguilla anguilla). This dimorphism has been related to dietary differences in the subadult elver and yellow eel stages, with broad‐heads generally feeding on harder and/or larger‐bodied prey items than narrow‐heads. Nevertheless, both broad‐ and narrow‐headed phenotypes can already be found among glass eels, the stage preceding the elver eel stage. As these glass eels are considered nonfeeding, we investigate here to what degree the observed variation in head width is reflected in variation in the musculoskeletal feeding system, as well as whether this reflects the same variation observed in the older, dimorphic yellow eels. Additionally, we investigate whether musculoskeletal differences between broad‐ and narrow‐headed glass eels have implications on their feeding performance and could thus impact prey preference when eels start feeding. Therefore, we compared the cranial musculoskeletal system of five broad‐ and narrow‐headed glass eels using 3D‐reconstructions and simulated the glass eel's bite force using the data of the muscle reconstructions. We found that the variation in the musculoskeletal system of glass eels indeed reflects that of the yellow eels. Broader heads were related to larger jaw muscles, responsible for mouth closure. Accordingly, broad‐heads could generate higher bite forces than narrow‐headed glass eels. In addition, broader heads were associated with higher coronoid processes and shorter hyomandibulae, beneficial for dealing with higher mechanical loadings and consequently, harder prey. We, thus, show that head width variation in glass eels is related to musculoskeletal differences which, in turn, can affect feeding performance. As such, differences in prey preference can already take place the moment the eels start feeding, potentially leading to the dimorphism observed in the elver and yellow eel stage.  相似文献   
104.
Cell to cell communication and pH in the frog lens   总被引:4,自引:0,他引:4       下载免费PDF全文
Fiber cells of the lens are electrically and diffusionally interconnected through extensive gap junctions. These junctions allow fluxes of small solutes to move between inner cells and peripheral cells, where the majority of transmembrane transport takes place. We describe here a method utilizing two intracellular microelectrodes to measure the cell to cell resistance between fiber cells at any given distance into the intact lens. We also use ion-sensitive microelectrodes to record intracellular pH at various depths in the intact lens. We find that gap junctions connecting inner fiber cells differ in pH sensitivity as well as normal coupling resistance from those connecting peripheral cells. The transition occurs in a zone between 500 and 650 microns into the lens. Fiber cells peripheral to this zone have a specific coupling resistance of 1.1 omega cm2, whereas those inside have a specific coupling resistance of 2.7 omega cm2. However, when the cytoplasm of fiber cells is acidified by bubbling with CO2, peripheral cells uncouple and the cell to cell resistance goes up more than 40-fold, whereas junctions inside this zone are essentially unaffected by changes in intracellular pH. In a normal frog lens, the intracellular pH in fiber cells near the lens surface is 7.02, a value significantly alkaline to electrochemical equilibrium. Our data suggest that Na/H exchange and perhaps other Na gradient-dependent mechanisms in the peripheral cells maintain this transmembrane gradient. Deep in the lens, the fiber cell cytoplasm is significantly more acidic (pHi 6.81) due to influx of hydrogen across the inner fiber cell membranes and production of H+ by the inner fiber cells. Because of the normally acid cytoplasm of interior fiber cells, their loss of gap junctional sensitivity to pH may be essential to lens survival.  相似文献   
105.

Background

We previously engineered Bacillus subtilis to express an antigen of interest fused to TasA in a biofilm. B. subtilis has several properties such as sporulation, biofilm formation and probiotic ability that were used for the oral application of recombinant spores harboring Echinococcus granulosus paramyosin and tropomyosin immunogenic peptides that resulted in the elicitation of a specific humoral immune response in a dog model.

Results

In order to advance our understanding of the research in oral immunization practices using recombinant B. subtilis spores, we describe here an affordable animal model. In this study, we show clear evidence indicating that a niche is required for B. subtilis recombinant spores to colonize the densely populated mice intestinal microbiota. The reduction of intestinal microbiota with an antibiotic treatment resulted in a positive elicitation of local humoral immune response in BALB/c mice after oral application of recombinant B. subtilis spores harboring TasA fused to E. granulosus (102-207) EgTrp immunogenic peptide. Our results were supported by a lasting prevalence of spores in mice feces up to 50 days after immunization and by the presence of specific secretory IgA, isolated from feces, against E. granulosus tropomyosin.

Conclusions

The reduction of mouse intestinal microbiota allowed the elicitation of a local humoral immune response in mice after oral application with spores of B. subtilis harboring immunogenic peptides against E. granulosus.
  相似文献   
106.
A small colony of zebrafish (Danio rerio) experienced 30% acute mortality within a few days after receipt from a commercial source. A few fish presented with small areas of raised scales or tissue necrosis, primarily near the caudal peduncle. Edwardsiella ictaluri (E. ictaluri) was identified by real-time PCR of pooled zebrafish and swabs of the pre-filter and fine filter pads, with subsequent sequence analysis. E. ictaluri is most commonly associated with an enteric septicemia in catfish species and can have significant economic impact on commercial catfish fisheries. However, several references report naturally occurring E. ictaluri infection of nonictalurid fishes, including zebrafish. Ours is the first report demonstrating the use of environmental sampling to identify E. ictaluri in a zebrafish colony by real-time PCR. Moreover, our report indicates that E. ictaluri is a relevant disease for institutions using zebrafish as research species and emphasizes the importance of carefully considering importation and quarantine practices.

Edwardsiella ictaluri (E. ictaluri) is a gram-negative facultative intracellular bacterium, known primarily for its economic impact in catfish (Ictalurus spp.) aquaculture in the United States. E. ictaluri is the causative agent for Enteric Septicemia of Catfish (ESC), or Hole-in-the-Head disease of catfish, and is one of the most commonly reported diseases by US catfish producers.6,17,22,25 The significant economic impact of ESC has driven ongoing research and development of various vaccines administered through immersion and feeding.17,22,39 Disease transmission among fish occurs by direct contact through the fecal-oral route, nasal passages, and gills.6,12,17 In catfish, E. ictaluri infection can present as areas of hemorrhage around the base of fins, skin ulceration in various locations, bulging eyes, and a distended abdomen, with mortality of 10 to 50% in populations of pond-raised channel catfish (Ictalurus punctatus).6,12 Nonictalurid fish that are susceptible to spontaneous infection are phylogenetically diverse. These species of fish include: Ayu (Plecoglossus altevelis),34 Bengal danios (Devario devario),38 green knifefish (Eigemannia virescens),16 a red-bellied piranha (Pygocentris nattereri),19 Nile tilapia (Oreochromis niloticus),37 and hybrid red tilapia (Oreochromis sp.).7 Naturally occurring epizootics have been reported in 3 laboratory zebrafish colonies,12 and since 2013 IDEXX BioAnalytics has identified E. ictaluri as the cause of morbidity and mortality in zebrafish colonies from 6 institutions. Clinical presentation of edwardsiellosis caused by E. ictaluri in zebrafish can include tissue necrosis, abdominal distention, general lethargy, raised scales, and skin hemorrhage, although acute mortality without clinical signs is also common.12,26 The disease is generally systemic. A number of organs can be affected including the kidney, spleen, and brain with large quantities of bacteria present, often located within macrophages. 12 Experimental E. ictaluri infections have also been described in many nonictalurid hosts such as rainbow trout (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha),3 and blue tilapia (Oreochromis aureus).28 Zebrafish have been used as an experimental model for ESC.14,26,33,36 This article describes an outbreak of Edwardsiella ictaluri in zebrafish purchased for use in undergraduate studies. The diagnosis was based on clinical signs, identification of E. ictaluri by real-time PCR in both clinically diseased fish and environmental samples from the tank filter, and sequence analysis. To our knowledge, this is the first report demonstrating the use of environmental sampling to identify Edwardsiella ictaluri in a colony of zebrafish.  相似文献   
107.
Pseudomonas entomophila L48 is a recently identified entomopathogenic bacterium which, upon ingestion, kills Drosophila melanogaster, and is closely related to P. putida. The complete genome of this species has been sequenced and therefore a genomic, genetic and structural analysis of the siderophore-mediated iron acquisition was undertaken. P. entomophila produces two siderophores, a structurally new and unique pyoverdine and the secondary siderophore pseudomonine, already described in P. fluorescens species. Structural analysis of the pyoverdine produced by the closely related P. putida KT2440 showed that this strain produces an already characterised pyoverdine, but different from P. entomophila, and no evidence was found for the production of a second siderophore. Growth stimulation assays with heterologous pyoverdines demonstrated that P. entomophila is able to utilize a large variety of structurally distinct pyoverdines produced by other Pseudomonas species. In contrast, P. putida KT2440 is able to utilize only its own pyoverdine and the pyoverdine produced by P. syringae LMG 1247. Our data suggest that although closely related, P. entomophila is a more efficient competitor for iron than P. putida.  相似文献   
108.
Cross talk between adrenergic and insulin signaling systems may represent a fundamental molecular basis of insulin resistance. We have characterized a newly established beta(3)-adrenoceptor-deficient (beta(3)-KO) brown adipocyte cell line and have used it to selectively investigate the potential role of novel-state and typical beta-adrenoceptors (beta-AR) on insulin signaling and action. The novel-state beta(1)-AR agonist CGP-12177 strongly induced uncoupling protein-1 in beta(3)-KO brown adipocytes as opposed to the beta(3)-selective agonist CL-316,243. Furthermore, CGP-12177 potently reduced insulin-induced glucose uptake and glycogen synthesis. Neither the selective beta(1)- and beta(2)-antagonists metoprolol and ICI-118,551 nor the nonselective antagonist propranolol blocked these effects. The classical beta(1)-AR agonist dobutamine and the beta(2)-AR agonist clenbuterol also considerably diminished insulin-induced glucose uptake. In contrast to CGP-12177 treatment, these negative effects were completely abrogated by metoprolol and ICI-118,551. Stimulation with CGP-12177 did not impair insulin receptor kinase activity but decreased insulin receptor substrate-1 binding to phosphatidylinositol (PI) 3-kinase and activation of protein kinase B. Thus the present study characterizes a novel cell system to selectively analyze molecular and functional interactions between novel and classical beta-adrenoceptor types with insulin action. Furthermore, it indicates insulin receptor-independent, but PI 3-kinase-dependent, potent negative effects of the novel beta(1)-adrenoceptor state on diverse biological end points of insulin action.  相似文献   
109.
Tocopherol is believed to be the most potent naturally occurring chain-breaking antioxidant. Hence, its refined phenolic head group chromanol may represent an optimum evolutionary solution to the problem of free-radical chain reactions in the lipid bilayer. To test the universal validity of this assumption beyond phenolic head groups, we have synthesized aromatic amine analogues of vitamin E and trolox with otherwise closely matching physicochemical properties: NH-toc and NH-trox. We have found that NH-toc and NH-trox were significantly more potent free radical scavengers, lipid peroxidation inhibitors and cytoprotective agents than their phenolic templates, tocopherol and trolox. In a chemical sense, thus, the chromanol head group does not constitute a global optimum for the design of chain-breaking antioxidants.  相似文献   
110.
Cardiac sodium (Na+)-calcium (Ca2+) exchanger 1 (NCX1) is central to the maintenance of normal Ca2+ homeostasis and contraction. Studies indicate that the Ca2+-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca2+ binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met369 antibody identified a novel calpain cleavage site at Met369. Engineering NCX1-Met369 into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met369 inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met369 cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号