首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   916篇
  免费   166篇
  国内免费   9篇
  2021年   12篇
  2018年   14篇
  2017年   9篇
  2016年   13篇
  2015年   37篇
  2014年   28篇
  2013年   28篇
  2012年   38篇
  2011年   47篇
  2010年   30篇
  2009年   18篇
  2008年   37篇
  2007年   41篇
  2006年   46篇
  2005年   33篇
  2004年   30篇
  2003年   29篇
  2002年   30篇
  2001年   29篇
  2000年   25篇
  1999年   26篇
  1998年   15篇
  1997年   14篇
  1996年   19篇
  1995年   17篇
  1994年   14篇
  1993年   18篇
  1992年   35篇
  1991年   23篇
  1990年   22篇
  1989年   25篇
  1988年   19篇
  1987年   19篇
  1986年   17篇
  1985年   11篇
  1984年   10篇
  1983年   14篇
  1981年   8篇
  1978年   8篇
  1977年   16篇
  1976年   7篇
  1975年   11篇
  1974年   11篇
  1973年   11篇
  1972年   8篇
  1971年   11篇
  1970年   8篇
  1969年   7篇
  1968年   9篇
  1967年   12篇
排序方式: 共有1091条查询结果,搜索用时 15 毫秒
91.
92.
The degradation of the toxic phenol p-cresol by Pseudomonas bacteria occurs by way of the protocatechuate metabolic pathway. The first enzyme in this pathway, p-cresol methylhydroxylase (PCMH), is a flavocytochrome c. The enzyme first catalyzes the oxidation of p-cresol to p-hydroxybenzyl alcohol, utilizing one atom of oxygen derived from water, and yielding one molecule of reduced FAD. The reducing electron equivalents are then passed one at a time from the flavin cofactor to the heme cofactor by intramolecular electron transfer, and subsequently to cytochrome oxidase within the periplasmic membrane via one or more soluble electron carrier proteins. The product, p-hydroxybenzyl alcohol, can also be oxidized by PCMH to yield p-hydroxybenzaldehyde. The fully refined X-ray crystal structure of PCMH in the native state has been obtained at 2. 5 A resolution on the basis of the gene sequence. The structure of the enzyme-substrate complex has also been refined, at 2.75 A resolution, and reveals significant conformational changes in the active site upon substrate binding. The active site for substrate oxidation is deeply buried in the interior of the PCMH molecule. A route for substrate access to the site has been identified and is shown to be governed by a swinging-gate mechanism. Two possible proton transfer pathways, that may assist in activating the substrate for nucleophilic attack and in removal of protons generated during the reaction, have been revealed. Hydrogen bonding interactions between the flavoprotein and cytochrome subunits that stabilize the intramolecular complex and may contribute to the electron transfer process have been identified.  相似文献   
93.
While investigating the basis for marked natural asymmetries in deoxyribonucleoside triphosphate (dNTP) pools in mammalian cells, we observed that culturing V79 hamster lung cells in a 2% oxygen atmosphere causes 2-3-fold expansions of the dATP, dGTP, and dTTP pools, whereas dCTP declines by a comparable amount. Others have made similar observations and have proposed that, because O(2) is required for formation of the catalytically essential oxygen-bridged iron center in ribonucleotide reductase, dCTP depletion at low oxygen tension results from direct or indirect effects upon ribonucleotide reductase. We have tested the hypothesis that oxygen limitation affects ribonucleotide specificity using recombinant mouse ribonucleotide reductase and an assay that permits simultaneous monitoring of the reduction of all four nucleotide substrates. Preincubation and assay of the enzyme in an anaerobic chamber caused only partial activity loss. Accordingly, we treated the enzyme with hydroxyurea, followed by removal of the hydroxyurea and exposure to atmospheres of varying oxygen content. The activity was totally depleted by hydroxyurea treatment and nearly fully regained by exposure to air. By the criterion of activities regained at different oxygen tensions, we found CDP reduction not to be specifically sensitive to oxygen depletion; however, GDP reduction was specifically sensitive. The basis for the differential response to reactivation by O(2) is not known, but it evidently does not involve varying rates of reactivation of different allosteric forms of the enzyme or altered response to allosteric effectors at reduced oxygen tension.  相似文献   
94.
95.
This article describes a shared model of the breast cancer experience negotiated by the members of a spontaneously organized breast cancer self-help group in eastern North Carolina. In the course of sharing their personal experience narratives with one another, these women worked to negotiate points of agreement among the varying sources of knowledge and oftentimes conflicting belief systems they held about breast cancer. The synthetic model they created rejected many of the assumptions underlying the dominant biomedical view of cancer "survivorship," particularly its emphasis on the autonomous individual as decision maker and its attendant male-gendered sports and military imagery--assumptions that often implicitly structured the agendas and topics discussed in the formal, medically sanctioned support groups these women found unappealing. The implications for theories about the construction of shared cultural models and for continuing efforts to design support groups to meet the needs of a diverse patient population are explored.  相似文献   
96.
Phylogenetic analyses of partial phytochrome B (PHYB) nuclear DNA sequences provide unambiguous resolution of evolutionary relationships within Poaceae. Analysis of PHYB nucleotides from 51 taxa representing seven traditionally recognized subfamilies clearly distinguishes three early-diverging herbaceous "bambusoid" lineages. First and most basal are Anomochloa and Streptochaeta, second is Pharus, and third is Puelia. The remaining grasses occur in two principal, highly supported clades. The first comprises bambusoid, oryzoid, and pooid genera (the BOP clade); the second comprises panicoid, arundinoid, chloridoid, and centothecoid genera (the PACC clade). The PHYB phylogeny is the first nuclear gene tree to address comprehensively phylogenetic relationships among grasses. It corroborates several inferences made from chloroplast gene trees, including the PACC clade, and the basal position of the herbaceous bamboos Anomochloa, Streptochaeta, and Pharus. However, the clear resolution of the sister group relationship among bambusoids, oryzoids, and pooids in the PHYB tree is novel; the relationship is only weakly supported in ndhF trees and is nonexistent in rbcL and plastid restriction site trees. Nuclear PHYB data support Anomochlooideae, Pharoideae, Pooideae sensu lato, Oryzoideae, Panicoideae, and Chloridoideae, and concur in the polyphyly of both Arundinoideae and Bambusoideae.  相似文献   
97.
4-Methyl-5-beta-hydroxyethylthiazole kinase (ThiK) catalyzes the phosphorylation of the hydroxyl group of 4-methyl-5-beta-hydroxyethylthiazole (Thz). This enzyme is a salvage enzyme in the thiamin biosynthetic pathway and enables the cell to use recycled Thz as an alternative to its synthesis from 1-deoxy-D-xylulose-5-phosphate, cysteine, and tyrosine. The structure of ThiK in the rhombohedral crystal form has been determined to 1.5 A resolution and refined to a final R-factor of 21. 6% (R-free 25.1%). The structures of the enzyme/Thz complex and the enzyme/Thz-phosphate/ATP complex have also been determined. ThiK is a trimer of identical subunits. Each subunit contains a large nine-stranded central beta-sheet flanked by helices. The overall fold is similar to that of ribokinase and adenosine kinase, although sequence similarity is not immediately apparent. The area of greatest similarity occurs in the ATP-binding site where several key residues are highly conserved. Unlike adenosine kinase and ribokinase, in which the active site is located between two domains within a single subunit, the ThiK active site it formed at the interface between two subunits within the trimer. The structure of the enzyme/ATP/Thz-phosphate complex suggests that phosphate transfer occurs by an inline mechanism. Although this mechanism is similar to that proposed for both ribokinase and adenosine kinase, ThiK lacks an absolutely conserved Asp thought to be important for catalysis in the other two enzymes. Instead, ThiK has a conserved cysteine (Cys198) in this position. When this Cys is mutated to Asp, the enzymatic activity increases 10-fold. Further sequence analysis suggests that another thiamin biosynthetic enzyme (ThiD), which catalyzes the formation of 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate by two sequential phosphorylation reactions, belongs to the same family of small molecule kinases.  相似文献   
98.
Trimethylamine dehydrogenase (TMADH) is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN, which is bent by approximately 25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This unusual conformation is thought to modulate the properties of the flavin to facilitate catalysis, and has been postulated to be the result of covalent linkage to Cys-30 at the flavin C6 atom. We report here the crystal structures of recombinant wild-type and the C30A mutant TMADH enzymes, both determined at 2.2 A resolution. Combined crystallographic and NMR studies reveal the presence of inorganic phosphate in the FMN binding site in the deflavo fraction of both recombinant wild-type and C30A proteins. The presence of tightly bound inorganic phosphate in the recombinant enzymes explains the inability to reconstitute the deflavo forms of the recombinant wild-type and C30A enzymes that are generated in vivo. The active site structure and flavin conformation in C30A TMADH are identical to those in recombinant and native TMADH, thus revealing that, contrary to expectation, the 6-S-cysteinyl FMN link is not responsible for the 25 degrees butterfly bending along the N5-N10 axis of the flavin in TMADH. Computational quantum chemistry studies strongly support the proposed role of the butterfly bend in modulating the redox properties of the flavin. Solution studies reveal major differences in the kinetic behavior of the wild-type and C30A proteins. Computational studies reveal a hitherto, unrecognized, contribution made by the S(gamma) atom of Cys-30 to substrate binding, and a role for Cys-30 in the optimal geometrical alignment of substrate with the 6-S-cysteinyl FMN in the enzyme active site.  相似文献   
99.
Organic–inorganic hybrid perovskite solar cells based on CH3NH3PbI3 have achieved great success with efficiencies exceeding 20%. However, there are increasing concerns over some reported efficiencies as the cells are susceptible to current–voltage (I–V) hysteresis effects. It is therefore essential that the origins and mechanisms of the I–V hysteresis can clearly be understood to minimize or eradicate these hysteresis effects completely for reliable quantification. Here, a detailed electro‐optical study is presented that indicates the hysteresis originates from lingering processes persisting from sub‐second to tens of seconds. Photocurrent transients, photoluminescence, electroluminescence, quasi‐steady state photoinduced absorption processes, and X‐ray diffraction in the perovskite solar cell configuration have been monitored. The slow processes originate from the structural response of the CH3NH3PbI3 upon E‐field application and/or charge accumulation, possibly involving methylammonium ions rotation/displacement and lattice distortion. The charge accumulation can arise from inefficient charge transfer at the perovskite interfaces, where it plays a pivotal role in the hysteresis. These findings underpin the significance of efficient charge transfer in reducing the hysteresis effects. Further improvements of CH3NH3PbI3‐based perovskite solar cells are possible through careful surface engineering of existing TiO2 or through a judicious choice of alternative interfacial layers.  相似文献   
100.
Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified.

Trial Registration

ClinicalTrials.gov NCT01196871  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号