首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   10篇
  国内免费   1篇
  186篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   7篇
  2014年   8篇
  2013年   12篇
  2012年   16篇
  2011年   7篇
  2010年   13篇
  2009年   12篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   8篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1983年   6篇
  1982年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
61.
62.
The endoplasmic reticulum (ER) can elicit proapoptotic signalling that results in transmission of Ca(2+) to the mitochondria, which in turn stimulates recruitment of the fission enzyme DRP1 to the surface of the organelle. Here, we show that BH3-only BIK activates this pathway at the ER in intact cells, resulting in mitochondrial fragmentation but little release of cytochrome c to the cytosol. The BIK-induced transformations in mitochondria are dynamic in nature and involve DRP1-dependent remodelling and opening of cristae, where the major stores of cytochrome c reside. This novel function for DRP1 is distinct from its recognized role in regulating mitochondrial fission. Selective permeabilization of the outer membrane with digitonin confirmed that BIK stimulation results in mobilization of intramitochondrial cytochrome c. Of note, BIK can cooperate with a weak BH3-only protein that targets mitochondria, such as NOXA, to activate BAX by a mechanism that is independent of DRP1 enzyme activity. When expressed together, BIK and NOXA cause rapid release of mobilized cytochrome c and activation of caspases.  相似文献   
63.
The accumulation and transport of solutes are hallmarks of osmoadaptation. In this study we have employed the inability of the Saccharomyces cerevisiae gpd1Delta gpd2Delta mutant both to produce glycerol and to adapt to high osmolarity to study solute transport through aquaglyceroporins and the control of osmostress-induced signaling. High levels of different polyols, including glycerol, inhibited growth of the gpd1Delta gpd2Delta mutant. This growth inhibition was suppressed by expression of the hyperactive allele Fps1-Delta1 of the osmogated yeast aquaglyceroporin, Fps1. The degree of suppression correlated with the relative rate of transport of the different polyols tested. Transport studies in secretory vesicles confirmed that Fps1-Delta1 transports polyols at increased rates compared with wild type Fps1. Importantly, wild type Fps1 and Fps1-Delta1 showed similarly low permeability for water. The growth defect on polyols in the gpd1Delta gpd2Delta mutant was also suppressed by expression of a heterologous aquaglyceroporin, rat AQP9. We surmised that this suppression was due to polyol influx, causing the cells to passively adapt to the stress. Indeed, when aquaglyceroporin-expressing gpd1Delta gpd2Delta mutants were treated with glycerol, xylitol, or sorbitol, the osmosensing HOG pathway was activated, and the period of activation correlated with the apparent rate of polyol uptake. This observation supports the notion that deactivation of the HOG pathway is closely coupled to osmotic adaptation. Taken together, our "conditional" osmotic stress system facilitates studies on aquaglyceroporin function and reveals features of the osmosensing and signaling system.  相似文献   
64.
Archaebacteria thrive in environments characterized by anaeobiosis, saturated salt, and both high and low extremes of temperature and pH. The bulk of their membrane lipids are polar, characterized by the archaeal structural features typified by ether linkage of the glycerol backbone to isoprenoid chains of constant length, often fully saturated, and with sn-2,3 stereochemistry opposite that of glycerolipids of Bacteria and Eukarya. Also unique to these bacteria are macrocyclic archaeol and membrane spanning caldarchaeol lipids that are found in some extreme thermophiles and methanogens. To define the barrier function of archaebacterial membranes and to examine the effects of these unique structural features on permeabilities, we investigated the water, solute (urea and glycerol), proton, and ammonia permeability of liposomes formed by these lipids. Both the macrocyclic archaeol and caldarchaeol lipids reduced the water, ammonia, urea, and glycerol permeability of liposomes significantly (6-120-fold) compared with diphytanylphosphatidylcholine liposomes. The presence of the ether bond and phytanyl chains did not significantly affect these permeabilities. However, the apparent proton permeability was reduced 3-fold by the presence of an ether bond. The presence of macrocyclic archaeol and caldarchaeol structures further reduced apparent proton permeabilities by 10-17-fold. These results indicate that the limiting mobility of the midplane hydrocarbon region of the membranes formed by macrocyclic archaeol and caldarchaeol lipids play a significant role in reducing the permeability properties of the lipid membrane. In addition, it appears that substituting ether for ester bonds presents an additional barrier to proton flux.  相似文献   
65.
66.
67.
Six species of mushrooms allied to the Family Sclerodermataceae, Lycoperdaceae and Geastraceae have been described for the first time from Azad Jammu and Kashmir. These are Scleroderma aurantium, Calvatia verrucosia sp. nov., Lycoperdon pedicellaton sp. nov. L. sphaericon sp. nov., L. echinulaton sp. nov., and Geastrum heptaplex sp. nov.  相似文献   
68.

Background

There are no data on the metabolic consequences of post-term birth (≥42 weeks gestation). We hypothesized that post-term birth would adversely affect insulin sensitivity, as well as other metabolic parameters and body composition in childhood.

Methods

77 healthy pre-pubertal children, born appropriate-for-gestational-age were studied in Auckland, New Zealand: 36 born post-term (18 boys) and 41 (27 boys) born at term (38–40 weeks gestation). Primary outcome was insulin sensitivity measured using intravenous glucose tolerance tests and Bergman’s minimal model. Other assessments included fasting hormone concentrations and lipid profiles, body composition from whole-body dual-energy X-ray absorptiometry, 24-hour ambulatory blood pressure monitoring, and inflammatory markers.

Results

Insulin sensitivity was 34% lower in post-term than in term children (7.7 vs. 11.6 x10-4·min-1·(mU/l); p<0.0001). There was a compensatory increase in acute insulin response among post-term children (418 vs 304 mU/l; p=0.037), who also displayed lower glucose effectiveness than those born at term (2.25 vs 3.11 x10-2·min-1; p=0.047). Post-term children not only had more body fat (p=0.014) and less fat-free mass (p=0.014), but also had increased central adiposity with more truncal fat (p=0.017) and greater android to gynoid fat ratio (p=0.007) compared to term controls. Further, post-term children displayed other markers of the metabolic syndrome: lower normal nocturnal systolic blood pressure dipping (p=0.027), lower adiponectin concentrations (p=0.005), as well as higher leptin (p=0.008) and uric acid (p=0.033) concentrations. Post-term boys (but not girls) also displayed a less favourable lipid profile, with higher total cholesterol (p=0.018) and LDL-C (p=0.006) concentrations, and total cholesterol to HDL-C ratio (p=0.048).

Conclusions

Post-term children have reduced insulin sensitivity and display a number of early markers of the metabolic syndrome. These findings could have important implications for the management of prolonged pregnancies. Future studies need to examine potential impacts later in life, as well as possible underlying mechanisms.  相似文献   
69.
Determining the mechanisms of flux through protein channels requires a combination of structural data, permeability measurement, and molecular dynamics (MD) simulations. To further clarify the mechanism of flux through aquaporin 1 (AQP1), osmotic p(f) (cm(3)/s/pore) and diffusion p(d) (cm(3)/s/pore) permeability coefficients per pore of H(2)O and D(2)O in AQP1 were calculated using MD simulations. We then compared the simulation results with experimental measurements of the osmotic AQP1 permeabilities of H(2)O and D(2)O. In this manner we evaluated the ability of MD simulations to predict actual flux results. For the MD simulations, the force field parameters of the D(2)O model were reparameterized from the TIP3P water model to reproduce the experimentally observed difference in the bulk self diffusion constants of H(2)O vs. D(2)O. Two MD systems (one for each solvent) were constructed, each containing explicit palmitoyl-oleoyl-phosphatidyl-ethanolamine (POPE) phospholipid molecules, solvent, and AQP1. It was found that the calculated value of p(f) for D(2)O is approximately 15% smaller than for H(2)O. Bovine AQP1 was reconstituted into palmitoyl-oleoyl-phosphatidylcholine (POPC) liposomes, and it was found that the measured macroscopic osmotic permeability coefficient P(f) (cm/s) of D(2)O is approximately 21% lower than for H(2)O. The combined computational and experimental results suggest that deuterium oxide permeability through AQP1 is similar to that of water. The slightly lower observed osmotic permeability of D(2)O compared to H(2)O in AQP1 is most likely due to the lower self diffusion constant of D(2)O.  相似文献   
70.
Over the last three decades, experiments in several mammalian species have shown that the febrile response to bacterial endotoxin is attenuated late in pregnancy. More recent evidence has established that the expression of nitric oxide synthase (NOS) enzymes is increased in the brain late in pregnancy. The current study investigated the possible role of brain nitric oxide in mediating the phenomenon of fever suppression. Core body temperature (Tb) of near-term pregnant rats (day 19 and 20) was measured following inhibition of brain NOS and intraperitoneal injection of LPS (50 microg/kg); they were compared with both day 15 pregnant and virgin animals. Intracerebroventricular injection with an inhibitor of NOS, NG-monomethyl-L-arginine citrate (L-NMMA; 280 microg), in near-term pregnant rats restored the febrile response to LPS. As expected, near-term dams that received intracerebroventricular vehicle + IP LPS did not increase Tb, in contrast to the 1.0 +/- 0.2 degrees C rise in Tb in dams treated with ICV L-NMMA + IP LPS (P < 0.01). In virgin females and day 15 pregnant controls receiving this treatment, the increases in Tb were 1.5 +/- 0.3 degrees C and 1.6 +/- 0.4 degrees C, respectively. Thus, blockade of brain NOS restored the febrile response to LPS in near-term dams; at 5 h postinjection, Tb was 60-70% of that observed in virgins and day 15 pregnant animals. Intracerebroventricular L-NMMA alone did not induce a significant change in Tb in any group. These results suggest that the mechanism underlying the suppression of the febrile response in near-term pregnancy is mediated by nitric oxide signaling in the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号