首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   24篇
  2023年   4篇
  2022年   15篇
  2021年   23篇
  2020年   16篇
  2019年   15篇
  2018年   14篇
  2017年   16篇
  2016年   21篇
  2015年   28篇
  2014年   27篇
  2013年   26篇
  2012年   22篇
  2011年   20篇
  2010年   11篇
  2009年   11篇
  2008年   10篇
  2007年   16篇
  2006年   10篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有331条查询结果,搜索用时 687 毫秒
101.
The influence of pregnancy on bone tissue metabolism is not completely understood. Caffeine also has a potentially negative influence on bones. The aim of this study was the evaluation of changes in the bones of pregnant rats under the influence of caffeine. The experiment was carried out on Wistar rats. The evaluation of rats' bone tissue quality was performed based on bone density measurements and resistance examinations. It analyzed the impact of caffeine on the degree of bone tissue mineralization and the composition of the bones. The mean value of pelvises 'wet' and 'dry' densities in a group of pregnant rats with caffeine intake was lower compared to the control group. The deformation in maximal load point of the femur shaft in the experimental group was significantly higher than in the control group. In the experimental group, the percentage of water in the bones was significantly higher, while the content of inorganic phase was significantly lower compared to the control group. The changes of biomechanical parameters in the group of pregnant rats with caffeine intake indicate its negative influence on the bone. Our results show higher plasticization of the bone shafts of the animals under the influence of caffeine. Higher deformation of bone shafts may have an effect on the statics of the skeleton. The administration of caffeine significantly affected the quantitative composition of the bone.  相似文献   
102.
103.
Sikora M  Cieplak M 《Proteins》2011,79(6):1786-1799
We estimate the size of mechanostability for 318 multidomain proteins which are single-chain and contain up to 1021 amino acids. We predict existence of novel types of mechanical clamps in which interdomain contacts play an essential role. Mechanical clamps are structural regions which are the primary source of a protein's resistance to pulling. Among these clamps there is one that opposes tensile stress due to two domains swinging apart. This movement strains and then ruptures the contacts that hold the two domains together. Another clamp also involves tensile stress but it originates from an immobilization of a structural region by a surrounding knot-loop (without involving any disulfide bonds). Still another mechanism involves shear between helical regions belonging to two domains. We also consider the amyloid-prone cystatin C which provides an example of a two-chain 3D domain-swapped protein. We predict that this protein should withstand remarkably large stress, perhaps of order 800 pN, when inducing a shearing strain. The survey is generated through molecular dynamics simulations performed within a structure-based coarse grained model.  相似文献   
104.
A series of 15 mostly new dialkoxyphosphoryl alkyl and aralkyl isothiocyanates were synthesized using two alternative strategies, and their in vitro antiproliferative activity against several cancer cell lines (including drug resistant) is here demonstrated. The IC50 values measured for the new compounds are within the range of 6.3-21.5 μM, and they are quite similar to the activity of two best and most extensively investigated natural benzyl isothiocyanate (A) and phenethyl isothiocyanate (B). Preliminary studies utilizing the cell cycle and reduced glutathione level analysis performed on A549 lung cancer cell line using representative compounds revealed important differences in the mechanism of action possibly correlated with their chemical properties. Hydrophobic compounds react mainly with the cytosolic glutathione reduced leading to its depletion, causing an oxidative stress and cell cycle arrest in G0/G1 phase. On the other hand, hydrophilic compounds cause moderate cell cycle arrest and massive cell death associated with moderate reduced glutathione depletion. These suggest that significant changes in the chemical structure of isothiocyanates, which do not lead to the significant changes in antiproliferative activity, but simultaneously cause a differences in the mechanism of action are possible.  相似文献   
105.
Nuclear localization of β-catenin is a hallmark of canonical Wnt signaling, a pathway that plays a crucial role in brain development and the neurogenesis of the adult brain. We recently showed that β-catenin accumulates specifically in mature thalamic neurons, where it regulates the expression of the Ca(v)3.1 voltage-gated calcium channel gene. Here, we investigated the mechanisms underlying β-catenin accumulation in thalamic neurons. We report that a lack of soluble factors produced either by glia or cortical neurons does not impair nuclear β-catenin accumulation in thalamic neurons. We next found that the number of thalamic neurons with β-catenin nuclear localization did not change when the Wnt/Dishevelled signaling pathway was inhibited by Dickkopf1 or a dominant negative mutant of Dishevelled3. These results suggest a WNT-independent cell-autonomous mechanism. We found that the protein levels of APC, AXIN1, and GSK3β, components of the β-catenin degradation complex, were lower in the thalamus than in the cortex of the adult rat brain. Reduced levels of these proteins were also observed in cultured thalamic neurons compared with cortical cultures. Finally, pulse-chase experiments confirmed that cytoplasmic β-catenin turnover was slower in thalamic neurons than in cortical neurons. Altogether, our data indicate that the nuclear localization of β-catenin in thalamic neurons is their cell-intrinsic feature, which was WNT-independent but associated with low levels of proteins involved in β-catenin labeling for ubiquitination and subsequent degradation.  相似文献   
106.
During the putative "implantation window", a period of maximal endometrial receptivity that spans 7-9 days after ovulation, a series of changes on the structural and molecular level occur that render the endometrium susceptible to implantation for the human embryo. Many members of the TGFbetas are expressed by human endometrium at different stages of menstrual cycle. Also studies regarding the MMP2 gene expression and activity of MMP2 in the implantation window have shown a higher expression and activity of MMP2 in women with impaired fertility. We have examined by RT-PCR the expression of TGFbeta2 and MMP2, MMP9 and TIMP1 in 28 patients with idiopathic infertility, 16 patients with unexplained recurrent miscarriage and 16 control women were enrolled in this study. Seven to nine days after ovulation endometrial biopsy by Pipelle or hysteroscopy was performed to assess the expression of TGFbeta2 , MMP2, MMP9 and TIMP1. We found that in endometria from women with idiopathic infertility TGFbeta2 expression was 2.8 fold higher than in endometria from control group and 2.1 fold higher in endometrial samples from women with unexplained recurrent miscarriage compared to the control group. The MMP2, MMP9 and TIMP1 expression in endometrial samples revealed no significant differences between the study groups and control group. There was a statistically significant negative correlation between TGFbeta2 and MMP9 expression in endometria from women in control group. The present investigations suggest that dysregulated TGFbeta2, MMP2, MMP9 and TIMP1 expression are associated with infertility and early pregnancy loss. However the exact mechanism of how overexpression of endometrial TGFbetaand MMPs interferes with implantation may be more complex.  相似文献   
107.
Sterols are one of the major components of cellular membranes. Although in mammalian membranes cholesterol is a predominant sterol, in the human organism plant sterols (phytosterols) can also be found. Phytosterols, especially if present in concentrations higher than normal (phytosterolemia), may strongly affect membrane properties. In this work, we studied phytosterol-phospholipid interactions in mixed Langmuir monolayers serving as model membranes. Investigated were two phytosterols, beta-sitosterol and stigmasterol and a variety of phospholipids, both phosphatidylethanolamines and phosphatidylcholines. The phospholipids had different polar heads, different length and saturation of their hydrocarbon chains. The interactions between molecules in mixed sterol/phospholipid films were characterized with the mean area per molecule (A(12)) and the excess free energy of mixing (DeltaG(Exc)). The effect of the sterols on the molecular organization of the phospholipid monolayers was analyzed based on the compression modulus values. It was found that the incorporation of the phytosterols into the phospholipid monolayers increased their condensation. The plant sterols revealed higher affinity towards phosphatidylcholines as compared to phosphatidylethanolamines. The phytosterols interacted more strongly with phospholipids possessing longer and saturated chains. Moreover, both the length and the saturation of the phosphatidylcholines influenced the stoichiometry of the most stable complexes. Our results, compared with those presented previously for cholesterol/phospholipid monolayers, allowed us to draw a conclusion that the structure of sterol (cholesterol, beta-sitosterol, stigmasterol) does not affect the stoichiometry of the most stable complexes formed with particular phospholipids, but influences their stability. Namely, the strongest interactions were found for cholesterol/phospholipids mixtures, while the weakest for mixed systems containing stigmasterol.  相似文献   
108.
Human mitochondria contain their own genome, encoding 13 polypeptides that are synthesized within the organelle. The molecular processes that govern and facilitate this mitochondrial translation remain unclear. Many key factors have yet to be characterized-for example, those required for translation termination. All other systems have two classes of release factors that either promote codon-specific hydrolysis of peptidyl-tRNA (class I) or lack specificity but stimulate the dissociation of class I factors from the ribosome (class II). One human mitochondrial protein has been previously identified in silico as a putative member of the class I release factors. Although we could not confirm the function of this factor, we report the identification of a different mitochondrial protein, mtRF1a, that is capable in vitro and in vivo of terminating translation at UAA/UAG codons. Further, mtRF1a depletion in HeLa cells led to compromised growth in galactose and increased production of reactive oxygen species.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号