首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   30篇
  2023年   6篇
  2022年   19篇
  2021年   23篇
  2020年   22篇
  2019年   18篇
  2018年   18篇
  2017年   19篇
  2016年   25篇
  2015年   33篇
  2014年   31篇
  2013年   37篇
  2012年   25篇
  2011年   25篇
  2010年   21篇
  2009年   15篇
  2008年   18篇
  2007年   21篇
  2006年   17篇
  2005年   17篇
  2004年   11篇
  2003年   9篇
  2002年   8篇
  2001年   9篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1967年   2篇
排序方式: 共有499条查询结果,搜索用时 15 毫秒
61.
Karsten U  Michalik D  Michalik M  West JA 《Planta》2005,222(2):319-326
The low molecular weight carbohydrates in various species of the red algal genus Hypoglossum (Delesseriaceae, Ceramiales) were analysed using HPLC, 1H and 13C-nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. All specimens contained the heteroside digeneaside which is considered as chemosystematic marker for the Ceramiales. A new HPLC method was developed for the separation and quantification of this compound, and concentrations between 131.6 mmol kg–1 and 539.6 mmol kg–1 DW could be measured among the species tested. In addition, during the HPLC analysis another new low molecular weight carbohydrate was detected in two species from The Philippines (H. barbatum) and Western Australia (H . heterocystideum), and its chemical structure elucidated as digalactosylglycerol applying various NMR experiments. The remaining Hypoglossum taxa lack this compound. Although digalactosylglycerol occurred in high concentrations in the range of 221.7 and 438.7 mmol kg–1 DW in H. barbatum and H . heterocystideum, respectively, it has never been reported for any other algal species before. Therefore, to test the possible physiological function of this unusual carbohydrate as organic osmolyte, H. barbatum was treated with a range of salinities. While the digeneaside content remained almost unchanged, the digalactosylglycerol concentration strongly increased with increasing salinities from 70 mmol kg–1 DW at 20 psu to 215 mmol kg–1 DW at 45 psu. In conclusion, while neither published work nor the present study indicate digeneaside to play more than a minor role in osmotic acclimation, the data presented strongly support an osmotic function of digalactosylglyerol.  相似文献   
62.
Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.  相似文献   
63.
Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.  相似文献   
64.
65.
Conformations of globular proteins in the denatured state were studied using a high-resolution lattice model of proteins and Monte Carlo dynamics. The model assumes a united-atom and high-coordination lattice representation of the polypeptide conformational space. The force field of the model mimics the short-range protein-like conformational stiffness, hydrophobic interactions of the side chains and the main-chain hydrogen bonds. Two types of approximations for the short-range interactions were compared: simple statistical potentials and knowledge-based protein-specific potentials derived from the sequence-structure compatibility of short fragments of protein chains. Model proteins in the denatured state are relatively compact, although the majority of the sampled conformations are globally different from the native fold. At the same time short protein fragments are mostly native-like. Thus, the denatured state of the model proteins has several features of the molten globule state observed experimentally. Statistical potentials induce native-like conformational propensities in the denatured state, especially for the fragments located in the core of folded proteins. Knowledge-based protein-specific potentials increase only slightly the level of similarity to the native conformations, in spite of their qualitatively higher specificity in the native structures. For a few cases, where fairly accurate experimental data exist, the simulation results are in semiquantitative agreement with the physical picture revealed by the experiments. This shows that the model studied in this work could be used efficiently in computational studies of protein dynamics in the denatured state, and consequently for studies of protein folding pathways, i.e. not only for the modeling of folded structures, as it was shown in previous studies. The results of the present studies also provide a new insight into the explanation of the Levinthal's paradox.  相似文献   
66.
67.
Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.  相似文献   
68.
Studies in tissue culture cells have demonstrated a role for the Ras-like GTPase Rap1 in the regulation of integrin-mediated cell-matrix and cadherin-mediated cell-cell contacts. To analyze the function of Rap1 in vivo, we have disrupted the Rap1A gene by homologous recombination. Mice homozygous for the deletion allele are viable and fertile. However, primary hematopoietic cells isolated from spleen or thymus have a diminished adhesive capacity on ICAM and fibronectin substrates. In addition, polarization of T cells from Rap1-/- cells after CD3 stimulation was impaired compared to that of wild-type cells. Despite this, these defects did not result in hematopoietic or cell homing abnormalities. Although it is possible that the relatively mild phenotype is a consequence of functional complementation by the Rap1B gene, our genetic studies confirm a role for Rap1A in the regulation of integrins.  相似文献   
69.
70.
Invariant natural killer T (iNKT) cells are innate lymphocytes with unique reactivity to glycolipid antigens bound to non-polymorphic CD1d molecules. They are capable of rapidly releasing pro- and/or anti-inflammatory cytokines and constitute attractive targets for immunotherapy of a wide range of diseases including autoimmune disorders. In this study, we have explored the beneficial effects of OCH, a Th2-polarizing glycolipid agonist of iNKT cells, in a humanized mouse model of rheumatoid arthritis (RA) in which citrullinated human proteins are targeted by autoaggressive immune responses in mice expressing an RA susceptibility human leukocyte antigen (HLA) DR4 molecule. We found for the first time that treatment with OCH both prevents and cures citrulline-induced autoimmune arthritis as evidenced by resolved ankle swelling and reversed histopathological changes associated with arthritis. Also importantly, OCH treatment blocked the arthritogenic capacity of citrullinated antigen-experienced splenocytes without compromising their global responsiveness or altering the proportion of splenic naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells. Interestingly, administering the Th1-promoting iNKT cell glycolipid ligand α-C-galactosylceramide into HLA-DR4 transgenic mice increased the incidence of arthritis in these animals and exacerbated their clinical symptoms, strongly suggesting a role for Th1 responses in the pathogenesis of citrulline-induced arthritis. Therefore, our findings indicate a role for Th1-mediated immunopathology in citrulline-induced arthritis and provide the first evidence that iNKT cell manipulation by Th2-skewing glycolipids may be of therapeutic value in this clinically relevant model, a finding that is potentially translatable to human RA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号