首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   47篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   12篇
  2017年   5篇
  2016年   8篇
  2015年   15篇
  2014年   12篇
  2013年   20篇
  2012年   24篇
  2011年   15篇
  2010年   16篇
  2009年   19篇
  2008年   18篇
  2007年   10篇
  2006年   18篇
  2005年   15篇
  2004年   7篇
  2003年   12篇
  2002年   11篇
  2001年   9篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
  1968年   1篇
排序方式: 共有322条查询结果,搜索用时 78 毫秒
271.
Mutations in the X-linked hypoxanthine-guanine phosphoribosyl transferase gene (HPRT) result in deficiencies of HPRT enzyme activity, which may cause either a severe form of gout or Lesch-Nyhan syndrome depending on the residual enzyme activity. Mutations leading to these diseases are heterogeneous and include DNA base substitutions, DNA deletions, DNA base insertions and errors in RNA splicing. Identification of mutations has been performed at the RNA and DNA level. Sequencing genomic DNA of the HPRT gene offers the possibility of direct diagnostic analysis independent on the expression of the mature HPRT mRNA. We describe a Dutch and a Spanish family, in which the Lesch-Nyhan syndrome and a severe partial HPRT-deficient phenotype, respectively, were diagnosed. Direct sequencing of the exons coding for the HPRT gene was performed in both families. Two new exon 3 mutations have been identified. At position 16676, the normally present G was substituted by an A in the Dutch kindred (HPRTUtrecht), and led to an arginine for glycine change at residue 70. At position 16680, the G was substituted by a T in the Spanish family (HPRTMadrid); this substitutes a valine for glycine at residue 71. These new mutations are located within one of the clusters of hotspots in exon 3 of the HPRT gene in which HPRTYale and HPRTNew Haven have previously been identified.  相似文献   
272.
273.
Corynebacterium glutamicum contains four serine/threonine protein kinases (STPKs) named PknA, PknB, PknG, and PknL. Here we present the first biochemical and comparative analysis of all four C. glutamicum STPKs and investigate their potential role in cell shape control and peptidoglycan synthesis during cell division. In vitro assays demonstrated that, except for PknG, all STPKs exhibited autokinase activity. We provide evidence that activation of PknG is part of a phosphorylation cascade mechanism that relies on PknA activity. Following phosphorylation by PknA, PknG could transphosphorylate its specific substrate OdhI in vitro. A mass spectrometry profiling approach was also used to identify the phosphoresidues in all four STPKs. The results indicate that the nature, number, and localization of the phosphoacceptors varies from one kinase to the other. Disruption of either pknL or pknG in C. glutamicum resulted in viable mutants presenting a typical cell morphology and growth rate. In contrast, we failed to obtain null mutants of pknA or pknB, supporting the notion that these genes are essential. Conditional mutants of pknA or pknB were therefore created, leading to partial depletion of PknA or PknB. This resulted in elongated cells, indicative of a cell division defect. Moreover, overexpression of PknA or PknB in C. glutamicum resulted in a lack of apical growth and therefore a coccoid-like morphology. These findings indicate that pknA and pknB are key players in signal transduction pathways for the regulation of the cell shape and both are essential for sustaining corynebacterial growth.  相似文献   
274.
Most studies of the genetic structure of Atlantic cod have focused on small geographical scales. In the present study, the genetic structure of cod sampled on spawning grounds in the North Atlantic was examined using eight microsatellite loci and the Pan I locus. A total of 954 cod was collected from nine different regions: the Baltic Sea, the North Sea, the Celtic Sea, the Irish Sea and Icelandic waters during spring 2002 and spring 2003, from Norwegian waters and the Faroe Islands (North and West spawning grounds) in spring 2003, and from Canadian waters in 1998. Temporal stability among spawning grounds was observed in Icelandic waters and the Celtic Sea, and no significant difference was observed between the samples from the Baltic Sea and between the samples from Faroese waters. F -statistics showed significant differences between most populations and a pattern of isolation-by-distance was described with microsatellite loci. The Pan I locus revealed the presence of two genetically distinguishable basins, the North-west Atlantic composed of the Icelandic and Canadian samples and the North-east Atlantic composed of all other samples. Permutation of allele sizes at each microsatellite locus among allelic states supported a mutational component to the genetic differentiation, indicating a historical origin of the observed variation. Estimation of the time of divergence was approximately 3000 generations, which places the origin of current genetic pattern of cod in the North Atlantic in the late Weichselian (Wisconsinian period), at last glacial maximum.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 315–329.  相似文献   
275.
It has been recently proposed that hypomethylation of DNA induced by 5-azacytidine (5-azaC) leads to reduced chromatid decatenation that ends up in endoreduplication, most likely due to a failure in topo II function [S. Mateos, I. Domínguez, N. Pastor, G. Cantero, F. Cortés, The DNA demethylating 5-azaC induces endoreduplication in cultured Chinese hamster cells, Mutat. Res. 578 (2005) 33-42]. The Chinese hamster mutant cell line EM9 has a high spontaneous frequency of endoreduplication as compared to its parental line AA8. In order to see if this is related to the degree of DNA methylation, we have investigated the basal levels of both endpoints in AA8 and EM9, as well as the effect of extensive 5-azaC-induced demethylation on the production of endoreduplication. Based on the correlation between the levels of DNA methylation and indices of endoreduplication we propose that genomic DNA hypomethylation in EM9 cell line is probably an important factor that bears significance in relation to the high basal level of endoreduplication observed in this cell line.  相似文献   
276.
The purpose of the present study was to investigate the involvement of phosphatidylcholine (PC) signalling in synaptic endings incubated under oxidative stress conditions. Synaptosomes purified from adult rats (4 months old) cerebral cortex were exposed to oxidative insult (FeSO4, 50 μM) or vehicle, and diacylglycerol (DAG) generation and free fatty acid (FFA) release were subsequently evaluated using exogenous [14C]PC as substrate. DAG formation increased after 5, 30, and 60 min of Fe2+-exposure with respect to the control conditions. The contribution of PC-specific phospholipase C (PC-PLC) and phospholipase D (PLD) pathways to DAG generation was evaluated using ethanol in the enzyme assays. Phosphatidylethanol (PEth) production was measured as a marker of PLD activity. In the presence of ethanol (2%) iron significantly stimulated DAG and PEth production at all times assayed. FFA release from PC, however, was inhibited after 5 and 60 min of iron exposure. Similar results were observed in aged animals (28 months old) when compared with adult animals. DAG generation from PC was also evaluated in the presence of the tyrosine kinase inhibitors genistein and herbimycin A. Inhibition of tyrosine kinase activity did not modify the stimulatory effect exerted by iron on PC-PLC and PLD activities. Moreover, the presence of LY294002 (a specific PI3K inhibitor) did not alter DAG production. Our results demonstrate that oxidative stress induced by free iron stimulates the generation of the lipid messenger DAG from PC in synaptic endings in adult and aged rats.  相似文献   
277.
The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (L-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis.  相似文献   
278.
279.
The nodulation of legumes has for more than a century been considered an exclusive capacity of a group of microorganisms commonly known as rhizobia and belonging to the alpha-Proteobacteria. However, in the last 3 years four nonrhizobial species, belonging to alpha and beta subclasses of the Proteobacteria, have been described as legume-nodulating bacteria. In the present study, two fast-growing strains, LUP21 and LUP23, were isolated from nodules of Lupinus honoratus. The phylogenetic analysis based on the 16S and 23S rRNA gene sequences showed that the isolates belong to the genus Ochrobactrum. The strains were able to reinfect Lupinus plants. A plasmid profile analysis showed the presence of three plasmids. The nodD and nifH genes were located on these plasmids, and their sequences were obtained. These sequences showed a close resemblance to the nodD and nifH genes of rhizobial species, suggesting that the nodD and nifH genes carried by strain LUP21T were acquired by horizontal gene transfer. A polyphasic study including phenotypic, chemotaxonomic, and molecular features of the strains isolated in this study showed that they belong to a new species of the genus Ochrobactrum for which we propose the name Ochrobactrum lupini sp. nov. Strain LUP21T (LMG 20667T) is the type strain.  相似文献   
280.
The MHC class I-related receptor, FcRn, is involved in binding and transporting immunoglobulin G (IgG) within and across cells. In contrast to mouse FcRn, which binds to IgGs from multiple different species, human FcRn is surprisingly stringent in binding specificity. For example, human FcRn does not bind to mouse IgG1 or IgG2a and interacts only weakly with mouse IgG2b. Here, we have used site-directed mutagenesis in combination with interaction (surface plasmon resonance) studies, with the goal of generating human FcRn variants that more closely resemble mouse FcRn in binding specificity. Our studies show that residues encompassing and extending away from the interaction site on the alpha2 helix of FcRn play a significant and most likely indirect role in FcRn-IgG interactions. Further, by combining mutations in the alpha2 helix with those in a non-conserved region of the alpha1 helix encompassing residues 79-89, we have generated a human FcRn variant that has properties very similar to those of mouse FcRn. These studies define the molecular basis for the marked difference in binding specificity between human and rodent FcRn, and give insight into how human FcRn recognizes IgGs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号