首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   3篇
  113篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   8篇
  2011年   7篇
  2010年   9篇
  2009年   9篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1990年   1篇
排序方式: 共有113条查询结果,搜索用时 0 毫秒
31.

Background

During evolution, innate immunity has been tuned to recognize pathogen-associated molecular patterns. However, some α-Proteobacteria are stealthy intracellular pathogens not readily detected by this system. Brucella members follow this strategy and are highly virulent, but other Brucellaceae like Ochrobactrum are rhizosphere inhabitants and only opportunistic pathogens. To gain insight into the emergence of the stealthy strategy, we compared these two phylogenetically close but biologically divergent bacteria.

Methodology/Principal Findings

In contrast to Brucella abortus, Ochrobactrum anthropi did not replicate within professional and non-professional phagocytes and, whereas neutrophils had a limited action on B. abortus, they were essential to control O. anthropi infections. O. anthropi triggered proinflammatory responses markedly lower than Salmonella enterica but higher than B. abortus. In macrophages and dendritic cells, the corresponding lipopolysaccharides reproduced these grades of activation, and binding of O. anthropi lipopolysaccharide to the TLR4 co-receptor MD-2 and NF-κB induction laid between those of B. abortus and enteric bacteria lipopolysaccharides. These differences correlate with reported variations in lipopolysaccharide core sugars, sensitivity to bactericidal peptides and outer membrane permeability.

Conclusions/Significance

The results suggest that Brucellaceae ancestors carried molecules not readily recognized by innate immunity, so that non-drastic variations led to the emergence of stealthy intracellular parasites. They also suggest that some critical envelope properties, like selective permeability, are profoundly altered upon modification of pathogen-associated molecular patterns, and that this represents a further adaptation to the host. It is proposed that this adaptive trend is relevant in other intracellular α-Proteobacteria like Bartonella, Rickettsia, Anaplasma, Ehrlichia and Wolbachia.  相似文献   
32.
It has been demonstrated that the release of histamine from mast cells by cytokines is strongly dependent on extracellular Ca2+ and Na+ ions. The results of our current research indicate that the removal of extracellular Na+ enhances NGF induced histamine release, but reduces induction by compound 48/80, suggesting that different mechanisms are involved in the secretory process induced by these agents.  相似文献   
33.
A revised purification of acetopyruvate hydrolase from orcinol-grown Pseudomonas putida ORC is described. This carbon-carbon bond hydrolase, which is the last inducible enzyme of the orcinol catabolic pathway, is monomeric with a molecular size of approximately 38 kDa; it hydrolyzes acetopyruvate to equimolar quantities of acetate and pyruvate. We have previously described the aqueous-solution structures of acetopyruvate at pH 7.5 and several synthesized analogues by (1)H-nuclear magnetic resonance (NMR)-Fourier transform (FT) experiments. Three (1)H signals (2.2 to 2.4 ppm) of the methyl group are assigned unambiguously to the carboxylate anions of 2,4-diketo, 2-enol-4-keto, and 2-hydrate-4-keto forms (40:50:10). A (1)H-NMR assay for acetopyruvate hydrolase was used to study the kinetics and stoichiometries of reactions within a single reaction mixture (0.7 ml) by monitoring the three methyl-group signals of acetopyruvate and of the products acetate and pyruvate. Examination of 4-tert-butyl-2,4-diketobutanoate hydrolysis by the same method allowed the conclusion that it is the carboxylate 2-enol form(s) or carbanion(s) that is the actual substrate(s) of hydrolysis. Substrate analogues of 2,4-diketobutanoate with 4-phenyl or 4-benzyl groups are very poor substrates for the enzyme, whereas the 4-cyclohexyl analogue is readily hydrolyzed. In aqueous solution, the arene analogues do not form a stable 2-enol structure but exist principally as a delocalized pi-electron system in conjugation with the aromatic ring. The effects of several divalent metal ions on solution structures were studied, and a tentative conclusion that the enol forms are coordinated to Mg(2+) bound to the enzyme was made. (1)H-(2)H exchange reactions showed the complete, fast equilibration of (2)H into the C-3 of acetopyruvate chemically; this accounts for the appearance of (2)H in the product pyruvate. The C-3 of the product pyruvate was similarly labelled, but this exchange was only enzyme catalyzed; the methyl group of acetate did not undergo an exchange reaction. The unexpected preference for bulky 4-alkyl-group analogues is discussed in an evolutionary context for carbon-carbon bond hydrolases. Routine one-dimensional (1)H-NMR in normal (1)H(2)O is a new method for rapid, noninvasive assays of enzymic activities to obtain the kinetics and stoichiometries of reactions in single reaction mixtures. Assessments of the solution structures of both substrates and products are also shown.  相似文献   
34.

Background  

Reproducibility of results can have a significant impact on the acceptance of new technologies in gene expression analysis. With the recent introduction of the so-called next-generation sequencing (NGS) technology and established microarrays, one is able to choose between two completely different platforms for gene expression measurements. This study introduces a novel methodology for gene-ranking stability analysis that is applied to the evaluation of gene-ranking reproducibility on NGS and microarray data.  相似文献   
35.
Optimizing culture conditions is known to be crucial for the differentiation of urothelial cell cultures and the formation of the permeability barrier. However, so far, no data exist to confirm if air–liquid (AL) and liquid–liquid (LL) interfaces are physiologically relevant during urothelial differentiation and barrier formation. To reveal the influence of interfaces on the proliferation, differentiation, and barrier formation of the urothelial cells (UCs) in vitro, we cultured UCs under four different conditions, i.e., at the AL or LL interfaces with physiological calcium concentration and without serum or without physiological calcium concentration and with serum. For each of the four models, the urothelial integrity was tested by measuring the transepithelial resistance (TER), and the differentiation stage was examined by immunolabeling of differentiation-related markers and ultrastructural analysis. We found that the UCs at a LL interface, regardless of the presence or absence of calcium or serum, form the urothelium with more cell layers and achieve a higher TER than UCs at an AL interface. However, UCs grown at an AL interface with physiological concentration of calcium in medium form only one- to two-layered urothelium of UCs, which are larger and express more differentiation-related proteins uroplakins than UCs in other models. These results demonstrate that the interface itself can play a major, although so-far neglected, role in urothelial physiology, particularly in the formation of the urothelial permeability barrier in vitro and the regulatory mechanisms related with urothelial differentiation. In the study, the culturing of UCs in three successive steps is proposed.  相似文献   
36.
Members of the toll-like receptor family are crucial in recognition of microbial pathogens as part of innate immune response. MD-2, an accessory protein to TLR4, present on the extracellular side of the membrane is needed to initiate the signal transduction. We have identified a 15 amino acid region of human MD-2 that contains several features of other lipopolysaccharide (LPS) binding proteins and peptides. In vitro LPS neutralization by this peptide was observed and confirmed by 2D transferred NOESY NMR experiments. NMR experiments have also shown binding of the MD-2 peptide to lipoteichoic acid (LTA) but not to peptidoglycan. Furthermore this peptide inhibited growth of gram-negative and to a lower extent of some gram-positive bacteria. Our results indicate that this region of MD-2 might be responsible for binding of LPS and confirms the role of MD-2 as an accessory protein in LPS signaling bestowing the Toll receptors their specificity.  相似文献   
37.
38.
Prion diseases are fatal transmissible neurodegenerative diseases affecting many mammalian species. The normal prion protein (PrP) converts into a pathological aggregated form, PrPSc, which is enriched in the β-sheet structure. Although the high resolution structure of the normal PrP was determined, the structure of the converted form of PrP remains inaccessible to high resolution techniques. To map the PrP conversion process we introduced disulfide bridges into different positions within the globular domain of PrP, tethering selected secondary structure elements. The majority of tethered PrP mutants exhibited increased thermodynamic stability, nevertheless, they converted efficiently. Only the disulfides that tether subdomain B1-H1-B2 to subdomain H2-H3 prevented PrP conversion in vitro and in prion-infected cell cultures. Reduction of disulfides recovered the ability of these mutants to convert, demonstrating that the separation of subdomains is an essential step in conversion. Formation of disulfide-linked proteinase K-resistant dimers in fibrils composed of a pair of single cysteine mutants supports the model based on domain-swapped dimers as the building blocks of prion fibrils. In contrast to previously proposed structural models of PrPSc suggesting conversion of large secondary structural segments, we provide evidence for the conservation of secondary structural elements of the globular domain upon PrP conversion. Previous studies already showed that dimerization is the rate-limiting step in PrP conversion. We show that separation and swapping of subdomains of the globular domain is necessary for conversion. Therefore, we propose that the domain-swapped dimer of PrP precedes amyloid formation and represents a potential target for therapeutic intervention.  相似文献   
39.
The early responses of leafy stem cuttings of Prunus and Castanea species with differing rooting abilities were assessed in a fog system using fluorescence measurements. Different types of cuttings of each species were used: cherry Prunus (‘GiSelA 5’, Prunus cerasus × Prunus canescens—148/2) and chestnut Castanea (‘Marsol’ and ‘Maraval’, Castanea crenata × Castanea sativa). The physiological status of cuttings in the early initiation phase was compared to the rooting results. For all cuttings, fluorescence measurements revealed a close-to-optimum photochemical efficiency, indicating that physiological stress (severance, water, etc.) was minimal. In cherry, the potential photochemical efficiency (Fv/Fm) differed slightly between terminal and basal cherry cuttings, being lower in the basal ones at the time of severance. Later in the propagation process, the differences were smaller. The photochemical efficiency did not differ between two ‘difficult-to-root’ Castanea clones, nor was it dependent on the length of the cuttings. The high rooting capacity of long Castanea cuttings (50 cm) indicated that physiological stress could be minimized under a fogging system. An erratum to this article can be found at  相似文献   
40.
Amniotic membrane (AM) is the innermost, multilayered part of the placenta. When harvested, processed and stored properly, its properties, stemming from AM biological composition, make it a useful tissue for ophthalmic surgery. AM was shown to have several beneficial effects: it promotes epithelization, has antimicrobial effects, decreases inflammation, fibrosis and neovascularization. Many case reports and case series as well as practical experience (e.g. reconstruction of conjunctival and corneal defects, treatment of corneal ulcers) demonstrated the beneficial effect of AM for different ophthalmological indications. The combination of the above mentioned beneficial effects and reasonable mechanical properties are also the reason why AM is used as a substrate for ex vivo expansion of epithelial progenitor cells. Recently, amnion-derived cells, which also have stem cell characteristics, have been proposed as potential contributors to cell-based treatment of ocular surface disease. However, the use of AM remains one of the least standardized methods in ophthalmic surgery. In this review, the various properties of AM and its current clinical use in ophthalmology in Slovenia are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号