首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2346篇
  免费   116篇
  2462篇
  2022年   10篇
  2021年   9篇
  2020年   6篇
  2019年   16篇
  2018年   31篇
  2017年   23篇
  2016年   41篇
  2015年   64篇
  2014年   89篇
  2013年   150篇
  2012年   178篇
  2011年   151篇
  2010年   112篇
  2009年   86篇
  2008年   153篇
  2007年   149篇
  2006年   149篇
  2005年   157篇
  2004年   135篇
  2003年   139篇
  2002年   144篇
  2001年   17篇
  2000年   16篇
  1999年   22篇
  1998年   36篇
  1997年   48篇
  1996年   22篇
  1995年   25篇
  1994年   10篇
  1993年   20篇
  1992年   12篇
  1991年   22篇
  1990年   14篇
  1989年   16篇
  1988年   5篇
  1987年   6篇
  1986年   11篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   22篇
  1981年   21篇
  1980年   16篇
  1979年   13篇
  1978年   11篇
  1977年   6篇
  1976年   10篇
  1975年   5篇
  1973年   6篇
  1971年   5篇
排序方式: 共有2462条查询结果,搜索用时 15 毫秒
991.
Pg-II fim from various strains of Porphyromonas gingivalis was classified on the basis of each nucleotide sequence, while the distribution of Pg-II fim types in 141 subgingival plaque samples was analyzed using PCR assays. Pg-II fim was divided into two types as follows: strains OMZ409, HG405, 381, ATCC 33277 and BH18/10 (type 1) and strains OMZ314 and HW24D-1 (type 2). The presence of P. gingivalis was demonstrated in 2.8% of healthy subjects and 56.1% of patients with periodontal diseases, and Pg-II fim was detected in 91.8% of the P. gingivalis-positive subjects. We also analyzed the distribution of the Pg-II fim types among Pg-II fim-positive patients, with the following results: type 1 (38.2%), type 2 (56.4%) and types 1 and 2 (5.4%). These findings strongly suggest that P. gingivalis organisms possessing Pg-II fim type 2 was principally detected in patients with periodontal diseases.  相似文献   
992.
Protoplasts of the basidiomycete, Fomitopsis palustris (formerly Tyromyces palustris), were utilized to study a function of the fungal plasma membrane. Fungal protoplasts exhibited metabolic activities as seen with intact mycelial cells. Furthermore, the uptake of certain compounds into the protoplast cells was quantitatively observed by using non-radioactive compounds. Vanillin was converted to vanillyl alcohol and vanillic acid as major products and to protocatechuic acid and 1,2,4-trihydroxybenzene as trace products by protoplasts prepared from F. palustris. Extracellular culture medium showed no activity responsible for the redox reactions of vanillin. Only vanillic acid was detected in the intracellular fraction of protoplasts. However, the addition of disulfiram, an aldehyde dehydrogenase inhibitor, caused an intracellular accumulation of vanillin, strongly suggesting that vanillin is taken up by the cell, followed by oxidation to vanillic acid. The addition of carbonylcyanide m-chlorophenylhydrazone, which dissipates the pH gradient across the plasma membrane, inhibited the uptake of either vanillin or vanillic acid into the cell. Thus, the fungus seems to possess transporter devices for both vanillin and vanillic acid for their uptake. Since vanillyl alcohol was only observed extracellularly, the reduction of vanillin was thought to be catalyzed by a membrane system.  相似文献   
993.
Familial amyloidotic polyneuropathy is a hereditary autosomal-dominant disease in which the deposited transthyretin fibrils are derived from amyloidogenic mutation. We investigated structure and stability of a human Ser112Ile transthyretin variant and showed that the Ser112Ile variant exists as a dimer having nonnative tertiary structure at physiological pH. In addition, the dimeric Ser112Ile assembles into a spherical aggregate and exerts cytotoxicity in a human neuroblastoma cell line. Our results suggest the importance of an unstable dimeric structure in forming spherical aggregates that will induce cell death.  相似文献   
994.
Differential scanning calorimetry (DSC) analyses of a series of collagen model peptides suggest that 4-hydroxyproline (Hyp) and 4-fluoroproline (fPro) have different effects on the stability of the collagen triple helices according to the sequence of amino acids and stereochemistry at the 4 positions of these imino acids. The thermodynamic parameters indicate that the enhanced stabilities are classified into two different types: the enthalpy term is primarily responsible for the enhanced stability of the triple helix of (Pro-Hyp(R)-Gly)(10), whereas the entropy term dominates the enhanced stability of (Pro-fPro(R)-Gly)(10). The difference between the molecular volumes observed in solution and intrinsic molecular volumes calculated from the crystal structure indicates the different hydration states of these peptides. (Pro-Hyp(R)-Gly)(10) is highly hydrated compared to (Pro-Pro-Gly)(10), which contributes to the larger enthalpy. In contrast, the volume of (Pro-fPro(R)-Gly)(10) shows a smaller degree of hydration than that of (Pro-Pro-Gly)(10). The entropic cost of forming the triple helix of the fPro-containing peptides is compensated by a decrease in an ordered structure of water molecules surrounding the peptide molecule, although the contribution of enthalpy originating from the hydration is reduced. These arguments about the different contribution of entropic and enthalpic terms were successfully applied to interpret the stability of the triple helix of (fPro(S)-Pro-Gly)(10) as well.  相似文献   
995.
NorM is a member of the multidrug and toxic compound extrusion (MATE) family and functions as a Na+/multidrug antiporter in Vibrio parahaemolyticus, although the underlying mechanism of the Na+/multidrug antiport is unknown. Acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM are conserved in one of the clusters of the MATE family. In this study, we investigated the role(s) of acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM by site-directed mutagenesis. Wild-type NorM and mutant proteins with amino acid replacements D32E (D32 to E), D32N, D32K, E251D, E251Q, D367A, D367E, D367N, and D367K were expressed and localized in the inner membrane of Escherichia coli KAM32 cells, while the mutant proteins with D32A, E251A, and E251K were not. Compared to cells with wild-type NorM, cells with the mutant NorM protein exhibited reduced resistance to kanamycin, norfloxacin, and ethidium bromide, but the NorM D367E mutant was more resistant to ethidium bromide. The NorM mutant D32E, D32N, D32K, D367A, and D367K cells lost the ability to extrude ethidium ions, which was Na+ dependent, and the ability to move Na+, which was evoked by ethidium bromide. Both E251D and D367N mutants decreased Na+-dependent extrusion of ethidium ions, but ethidium bromide-evoked movement of Na+ was retained. In contrast, D367E caused increased transport of ethidium ions and Na+. These results suggest that Asp32, Glu251, and Asp367 are involved in the Na+-dependent drug transport process.  相似文献   
996.
997.
Mammalian glutamate receptor (GluR) delta2 is selectively expressed in cerebellar Purkinje cells and plays key roles in cerebellar plasticity, motor learning, and neural wiring. Here, we isolated cDNA encoding the zebrafish ortholog of mammalian GluRdelta2. We found that in adult zebrafish brain, glurdelta2 mRNA was expressed not only in cerebellar Purkinje cells, but also in the crest cells of the medial octavolateral nucleus (MON) and the type I neurons of the optic tectum. Immunohistochemical analysis revealed that zebrafish GluRdelta2 proteins were selectively localized in the apical dendrites of these neurons. Interestingly, the crest cells of the MON and the type I neurons of the optic tectum receive large numbers of parallel fiber inputs at the apical dendrites and sensory inputs at the proximal or basal dendrites. These results suggest that the expression of zebrafish GluRdelta2 is selective for cerebellum-like neural wiring with large numbers of parallel fiber inputs.  相似文献   
998.
Endocrine disruptors (EDs) are a great concern throughout the world, because they have adverse effects on human health and wildlife. In the present study, we investigated the effects of EDs on the proliferation and survival of murine neural stem cells (NSCs). In contrast to bisphenol A, phthalic acid benzyl n-butyl ester, phthalic acid di-n-butyl ester and phthalic acid di(2-ethylhexyl) ester, the treatment of NSCs with 4-nonylphenol for 24 h inhibited cell growth in a concentration-dependent manner. In addition, treatment with 4-nonylphenol resulted in nuclear condensation and DNA fragmentation (morphological changes due to apoptosis) in NSCs after 12 h of exposure, and activated caspase-3 after 6 h and 9 h of exposure. Furthermore, an exposure to 4-nonylphenol led to the accumulation of cells at the G2/M phase interface and down-regulated the protein levels of cyclin A and B1, which are the major regulatory proteins at the G2 to M transition of the cell cycle. Together, these results indicate that, in contrast to other EDs, 4-nonylphenol may exhibit a potent cytotoxicity through apoptosis via the caspase cascade and cell cycle arrest at the G2/M phase, and suggest that 4-nonylphenol may affect neurogenesis in the CNS.  相似文献   
999.
A rat model of a hyperkinetic disorder was used to investigate the mechanisms underlying motor hyperactivity. Rats received an intracisternal injection of 6-hydroxydopamine on post-natal day 5. At 4 weeks of age, the animals showed significant motor hyperactivity during the dark phase, which was attenuated by methamphetamine injection. Gene expression profiling was carried out in the striatum and midbrain using a DNA macroarray. In the striatum at 4 weeks, there was increased gene expression of the NMDA receptor 1 and tachykinins, and decreased expression of a GABA transporter. At 8 weeks, expression of the NMDA receptor 1 in the striatum was attenuated, with enhanced expression of the glial glutamate/aspartate transporter. In the midbrain, a number of genes, including the GABA transporter gene, showed decreased expression at 4 weeks. At 8 weeks, gene expression was augmented for the dopamine transporter, D4 receptor, and several genes encoding peptides, such as tachykinins and their receptors. These results suggest that in the striatum the neurotransmitters glutamate, GABA and tachykinin may play crucial roles in motor hyperactivity during the juvenile period. Several classes of neurotransmitters, including dopamine and peptides, may be involved in compensatory mechanisms during early adulthood. These data may prompt further neurochemical investigations in hyperkinetic disorders.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号