首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2343篇
  免费   116篇
  2022年   8篇
  2021年   9篇
  2020年   6篇
  2019年   16篇
  2018年   31篇
  2017年   23篇
  2016年   41篇
  2015年   64篇
  2014年   89篇
  2013年   150篇
  2012年   178篇
  2011年   151篇
  2010年   112篇
  2009年   86篇
  2008年   153篇
  2007年   149篇
  2006年   149篇
  2005年   157篇
  2004年   135篇
  2003年   139篇
  2002年   144篇
  2001年   17篇
  2000年   16篇
  1999年   22篇
  1998年   36篇
  1997年   48篇
  1996年   22篇
  1995年   25篇
  1994年   10篇
  1993年   20篇
  1992年   12篇
  1991年   22篇
  1990年   14篇
  1989年   16篇
  1988年   5篇
  1987年   6篇
  1986年   11篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   22篇
  1981年   21篇
  1980年   16篇
  1979年   13篇
  1978年   11篇
  1977年   6篇
  1976年   10篇
  1975年   5篇
  1973年   6篇
  1971年   5篇
排序方式: 共有2459条查询结果,搜索用时 15 毫秒
61.
Temperature-dependent regulation of affinity binding between bioactive ligands and their cell membrane receptors is an attractive approach for the dynamic control of cellular adhesion, proliferation, migration, differentiation, and signal transduction. Covalent conjugation of bioactive ligands onto thermoresponsive poly(N-isopropylacrylamide) (PIPAAm)-grafted surfaces facilitates the modulation of one-on-one affinity binding between bioactive ligands and cellular receptors by changing temperature. For the dynamic control of the multivalent affinity binding between heparin and heparin-binding proteins, thermoresponsive cell culture surface modified with heparin, which interacts with heparin-binding proteins such as basic fibroblast growth factor (bFGF), has been proposed. Heparin-functionalized thermoresponsive cell culture surface induces (1) the multivalent affinity binding of bFGF in active form and (2) accelerating cell sheet formation in the state of shrunken PIPAAm chains at 37°C. By lowering temperature to 20°C, the affinity binding between bFGF and immobilized heparin is reduced with increasing the mobility of heparin and the swollen PIPAAm chains, leading to the detachment of cultured cells. Therefore, heparin-functionalized thermoresponsive cell culture surface was able to enhance cell proliferation and detach confluent cells as a contiguous cell sheet by changing temperature. A cell cultivation system using heparin-functionalized thermoresponsive cell culture surface is versatile for immobilizing other heparin-binding proteins such as vascular endothelial growth factor, fibronectin, antithrombin III, and hepatocyte growth factor, etc. for tuning the adhesion, growth, and differentiation of various cell species.  相似文献   
62.
Since spermatogonial stem cells (SSCs) are capable of both self-renewal and differentiation to daughter cells for subsequent spermatogenesis, the development of an efficient in vitro culture system is essential for studies related to spermatogenesis. Although the currently available system is serum-free and contains only chemically-defined components, it highly relies upon bovine serum albumin (BSA), a component with batch-to-batch quality variations similar to those of fetal bovine serum. Thus, we searched for an alternative BSA-free culture system that preserved the properties of SSCs. In this study, we utilized Knockout Serum Replacement (KSR) in the SSC culture medium, as a substitute for BSA. The results demonstrated that KSR supported the continuous growth of SSCs in vitro and the SSC activity in vivo without BSA, in a feeder-cell combination with mouse embryonic fibroblasts. The addition of BSA to KSR further facilitated cell cycle progression, whereas a transplantation assay revealed that the addition of BSA did not affect the number of SSCs in vivo. The combination of KSR with BSA also allowed the elimination of GFRA1 and FGF2, and the reduction of the GDNF concentration from 20 ng/ml to 5 ng/ml, while maintaining the growth rate and the expression of SSC markers. Furthermore, KSR was also useful with SSCs from non-DBA/2 strains, such as C57BL/6 and ICR. These results suggested that KSR is an effective substitute for BSA for long-term in vitro cultures of SSCs. Therefore, this method is practical for various studies related to SSCs, including spermatogenesis and germ stem cell biology.  相似文献   
63.
Evasion of apoptosis, which enables cells to survive and proliferate under metabolic stress, is one of the hallmarks of cancer. We have recently reported that SH3GLB1/Bif-1 functions as a haploinsufficient tumor suppressor to prevent the acquisition of apoptosis resistance and malignant transformation during Myc-driven lymphomagenesis. SH3GLB1 is a membrane curvature-inducing protein that interacts with BECN1 though UVRAG and regulates the post-Golgi trafficking of membrane-integrated ATG9A for autophagy. At the premalignant stage, allelic loss of Sh3glb1 enhances Myc-induced chromosomal instability and results in the upregulation of anti-apoptotic proteins, including MCL1 and BCL2L1. Notably, we found that Sh3glb1 haploinsufficiency increases mitochondrial mass in overproliferated prelymphomatous Eμ-Myc cells. Moreover, loss of Sh3glb1 suppresses autophagy-dependent mitochondrial clearance (mitophagy) in PARK2/Parkin-expressing mouse embryonic fibroblasts (MEFs) treated with the mitochondrial uncoupler CCCP. Interestingly, PARK2-expressing Sh3glb1-deficient cells accumulate ER-associated immature autophagosome-like structures after treatment with CCCP. Taken together, we propose a model of mitophagy in which SH3GLB1 together with the class III phosphatidylinositol 3-kinase complex II (PIK3C3CII) (PIK3R4-PIK3C3-BECN1-UVRAG) regulates the trafficking of ATG9A-containing Golgi-derived membranes (A9+GDMs) to damaged mitochondria for autophagosome formation to counteract oncogene-driven tumorigenesis.  相似文献   
64.
Two novel glycosides, 4,5-dimethoxy-3-hydroxyphenol 1-O-β-(6′-O-galloyl)-glucopyranoside (1) and (+)-2α-O-galloyl lyoniresinol 3α-O-β-d-xylopyranoside (2), as well as a novel ellagitannin named epiquisqualin B (3), were isolated from sapwood of Quercus mongolica var. crispula along with 19 known phenolic compounds. The structures of the novel compounds were elucidated on the basis of chemical and spectroscopic investigation. Compound 2 is the first example of a lignan galloyl ester, and 3 is the oxidation product of vescalagin, which is the major ellagitannin of this plant.  相似文献   
65.
Diapause is a programmed developmental arrest that has evolved in a wide variety of organisms and allows them survive unfavorable seasons. This developmental state is particularly common in insects. Based on circumstantial evidence, pupal diapause has been hypothesized to result from a cessation of prothoracicotropic hormone (PTTH) secretion from the brain. Here, we provide direct evidence for this classical hypothesis by determining both the PTTH titer in the hemolymph and the PTTH content in the brain of diapause pupae in the cabbage army moth Mamestra brassicae. For this purpose, we cloned the PTTH gene, produced PTTH-specific antibodies, and developed a highly sensitive immunoassay for PTTH. While the hemolymph PTTH titer in non-diapause pupae was maintained at high levels after pupation, the titer in diapause pupae dropped to an undetectable level. In contrast, the PTTH content of the post-pupation brain was higher in diapause animals than in non-diapause animals. These results clearly demonstrate that diapause pupae have sufficient PTTH in their brain, but they do not release it into the hemolymph. Injecting PTTH into diapause pupae immediately after pupation induced adult development, showing that a lack of PTTH is a necessary and sufficient condition for inducing pupal diapause. Most interestingly, in diapause-destined larvae, lower hemolymph titers of PTTH and reduced PTTH gene expression were observed for 4 and 2 days, respectively, prior to pupation. This discovery demonstrates that the diapause program is already manifested in the PTTH neurons as early as the mid final instar stage.  相似文献   
66.
67.
Elevated IL-7 in the target tissues is closely associated with multiple autoimmune disorders, including Sjögren’s syndrome (SS). We recently found that IL-7 plays an essential role in the development and onset of primary SS (pSS) in C57BL/6.NOD-Aec1Aec2 mice, a well-defined mouse model of primary SS. However, environmental signals that cause excessive IL-7 production are not well-characterized. Innate immune signaling plays a critical role in shaping the adaptive immune responses including autoimmune responses. We and others have previously shown that innate immune signaling can induce IL-7 expression in lungs and intestines of C57BL/6 mice. In this study, we characterized the effects of poly I:C, a double-stranded RNA analog and toll-like receptor 3 agonist, on the induction of IL-7 expression in salivary glands and on pSS development. We showed that poly I:C administration to C57BL/6 mice rapidly induced IL-7 expression in the salivary glands in a type 1 IFN- and IFN-γ-dependent manner. Moreover, poly I:C-induced IL-7 contributed to the optimal up-regulation of CXCL9 in the salivary glands, which may subsequently promote recruitment of more IFN-γ-producing T cells. Repeated administration of poly I:C to C57BL/6.NOD-Aec1Aec2 mice accelerated the development of SS-like exocrinopathy, and this effect was abolished by the blockade of IL-7 receptor signaling with a neutralizing antibody. Finally, poly I:C or a combination of IFN-α and IFN-γ induced IL-7 gene expression and protein production in a human salivary gland epithelial cell line. Hence, we demonstrate that IL-7 expression in the salivary gland cells can be induced by poly I:C and delineate a crucial mechanism by which innate immune signals facilitate the development of pSS, which is through induction of IL-7 in the target tissues.  相似文献   
68.
Cetuximab is a chimeric mouse–human monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). However, EGFR expression determined by immunohistochemistry does not predict clinical outcomes of colorectal cancer (CRC) patients treated with cetuximab. Therefore, we evaluated the correlation between EGFR levels detected by cetuximab and drug sensitivities of CRC cell lines (Caco-2, WiDR, SW480, and HCT116) and the A431 epidermoid carcinoma cell line. We used flow cytometry (FCM) to detect EGFR-binding of biotinylated cetuximab on the cell surface. Subcloned cell lines showing the highest and lowest EGFR expression levels were chosen for further study. Cytotoxic assays were used to determine differential responses to cetuximab. Xenograft models treated with cetuximab intraperitoneally to assess sensitivity to cetuximab. Strong responses to cetuximab were specifically exhibited by subcloned cells with high EGFR expression levels. Furthermore, cetuximab inhibited the growth of tumors in xenograft models with high or low EGFR expression levels by 35% and 10%–20%, respectively. We conclude that detection of EGFR expression by cetuximab promises to provide a novel, sensitive, and specific method for predicting the sensitivity of CRC to cetuximab.  相似文献   
69.
70.
The diversity of sulfate-reducing prokaryotes (SRPs) and sulfur-oxidizing prokaryotes (SOPs) in freshwater lake ecosystems was investigated by cloning and sequencing of the aprA gene, which encodes for a key enzyme in dissimilatory sulfate reduction and sulfur oxidation. To understand their diversity better, the spatial distribution of aprA genes was investigated in sediments collected from six geographically distant lakes in Antarctica and Japan, including a hypersaline lake for comparison. The microbial community compositions of freshwater sediments and a hypersaline sediment showed notable differences. The clones affiliated with Desulfobacteraceae and Desulfobulbaceae were frequently detected in all freshwater lake sediments. The SOP community was mainly composed of four major phylogenetic groups. One of them formed a monophyletic cluster with a sulfur-oxidizing betaproteobacterium, Sulfuricella denitrificans, but the others were not assigned to specific genera. In addition, the AprA sequences, which were not clearly affiliated to either SRP or SOP lineages, dominated the libraries from four freshwater lake sediments. The results showed the wide distribution of some sulfur-cycle prokaryotes across geographical distances and supported the idea that metabolic flexibility is an important feature for SRP survival in low-sulfate environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号