首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   31篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2014年   8篇
  2013年   10篇
  2012年   12篇
  2011年   21篇
  2010年   12篇
  2009年   7篇
  2008年   20篇
  2007年   18篇
  2006年   11篇
  2005年   17篇
  2004年   17篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   13篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1992年   8篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1967年   7篇
  1966年   2篇
排序方式: 共有361条查询结果,搜索用时 187 毫秒
301.
Transforming growth factor-alpha (TGF-alpha), a member of the epidermal growth factor (EGF) family, is produced within the mouse anterior pituitaries. However, the cell types of TGF-alpha-expressing cells and the physiological roles of TGF-alpha within mouse pituitary glands remain unclear. The aim of the present study was to localize TGF-alpha mRNA-expressing cells, and to clarify the involvement of TGF-alpha in estrogen-induced DNA replication in mouse anterior pituitary cells. Northern blot analysis demonstrated TGF-alpha mRNA expression in adult male and female mouse anterior pituitaries. In situ hybridization analysis of the pituitaries in these mice showed that TGF-alpha mRNA-expressing cells in the anterior pituitary are round, oval, and medium-sized. TGF-alpha mRNA was colocalized in most of the growth hormone (GH) mRNA-expressing cells, while only some of the prolactin (PRL) mRNA-expressing cells. DNA replication in the anterior pituitary cells was detected by monitoring the cellular uptake of a thymidine analogue, bromodeoxyuridine (BrdU) in a primary serum-free culture system. Estradiol-17beta (E2) and TGF-alpha treatment increased the number of BrdU-labelled mammotrophs, indicating that E2 and TGF-alpha treatment stimulates the DNA replication in mammotrophs. Immunoneutralization of TGF-alpha with anti-TGF-alpha-antibodies nullified the E2-induced increase in DNA replication. RT-PCR analysis of TGF-alpha mRNA expression in ovariectomized female mice revealed that E2 increases TGF-alpha mRNA levels. These results indicate that the TGF-alpha produced primarily in the somatotrophs mediates the stimulatory effects of estrogen on the DNA replication of pituitary cells in a paracrine or autocrine manner.  相似文献   
302.
The mismatch repair system (MMR) recognizes and corrects mismatched or unpaired bases caused mainly by DNA polymerase, and contributes to the fidelity of DNA replication in living cells. In Escherichia coli, the MutHLS system is known to function in MMR, and homologues of MutS and MutL are widely conserved in almost all organisms. However, the MutH endonuclease has not been found in the majority of organisms. Such organisms, including Thermus thermophilus HB8, often possess the so-called MutS2 protein, which is highly homologous to MutS but contains an extra C-terminal stretch. To elucidate the function of MutS2, we overexpressed and purified T. thermophilus MutS2 (ttMutS2). ttMutS2 demonstrated the ability to bind double-stranded (ds) DNA, but, unlike ttMutS, ttMutS2 showed no specificity for mismatched duplexes. ttMutS2 ATPase activity was also detected and was stimulated by dsDNA. Our results also showed that ttMutS2 incises dsDNA. ttMutS2 incises not only oligo dsDNA but also plasmid DNA, suggesting that ttMutS2 possesses an endonuclease activity. At low concentrations, the incision activity was not retained, but was promoted by T. thermophilus MutL.  相似文献   
303.
ADP-ribose pyrophosphatase (ADPRase) catalyzes the divalent metal ion-dependent hydrolysis of ADP-ribose to ribose 5'-phosphate and AMP. This enzyme plays a key role in regulating the intracellular ADP-ribose levels, and prevents nonenzymatic ADP-ribosylation. To elucidate the pyrophosphatase hydrolysis mechanism employed by this enzyme, structural changes occurring on binding of substrate, metal and product were investigated using crystal structures of ADPRase from an extreme thermophile, Thermus thermophilus HB8. Seven structures were determined, including that of the free enzyme, the Zn(2+)-bound enzyme, the binary complex with ADP-ribose, the ternary complexes with ADP-ribose and Zn(2+) or Gd(3+), and the product complexes with AMP and Mg(2+) or with ribose 5'-phosphate and Zn(2+). The structural and functional studies suggested that the ADP-ribose hydrolysis pathway consists of four reaction states: bound with metal (I), metal and substrate (II), metal and substrate in the transition state (III), and products (IV). In reaction state II, Glu-82 and Glu-70 abstract a proton from a water molecule. This water molecule is situated at an ideal position to carry out nucleophilic attack on the adenosyl phosphate, as it is 3.6 A away from the target phosphorus and almost in line with the scissile bond.  相似文献   
304.
The kinetic properties of a microsomal gill (Na(+), K(+)) ATPase from the blue crab, Callinectes danae, acclimated to 15 per thousand salinity for 10 days, were analyzed using the substrate p-nitrophenylphosphate. The (Na(+), K(+))-ATPase hydrolyzed the substrate obeying Michaelian kinetics at a rate of V=102.9+/-4.3 U.mg(-1) with K(0.5)=1.7+/-0.1 mmol.L(-1), while stimulation by magnesium (V=93.7+/-2.3 U.mg(-1); K(0.5)=1.40+/-0.03 mmol.L(-1)) and potassium ions (V=94.9+/-3.5 U.mg(-1); K(0.5)=2.9+/-0.1 mmol.L(-1)) was cooperative. K(+)-phosphatase activity was also stimulated by ammonium ions to a rate of V=106.2+/-2.2 U. mg(-1) with K(0.5)=9.8+/-0.2 mmol.L(-1), following cooperative kinetics (n(H)=2.9). However, K(+)-phosphatase activity was not stimulated further by K(+) plus NH(4) (+) ions. Sodium ions (K(I)=22.7+/-1.7 mmol.L(-1)), and orthovanadate (K(I)=28.1+/-1.4 nmol.L(-1)) completely inhibited PNPPase activity while ouabain inhibition reached almost 75% (K(I)=142.0+/-7.1 micromol.L(-1)). Western blotting analysis revealed increased expression of the (Na(+), K(+))-ATPase alpha-subunit in crabs acclimated to 15 per thousand salinity compared to those acclimated to 33 per thousand salinity. The increase in (Na(+), K(+))-ATPase activity in C. danae gill tissue in response to low-salinity acclimation apparently derives from the increased expression of the (Na(+), K( (+) ))-ATPase alpha-subunit; phosphate-hydrolyzing enzymes other than (Na(+), K(+))-ATPase are also expressed. These findings allow a better understanding of the kinetic behavior of the enzymes that underlie the osmoregulatory mechanisms of euryhaline crustaceans.  相似文献   
305.
306.
The inhibitory effects of a novel, orally active matrix metalloproteinase (MMP) inhibitor, ONO-4817, on the development of uterine adenomyosis induced experimentally by pituitary grafting were examined in mice. Mice were given transplants of isologous anterior pituitary glands (PGs) into the right uterine lumen at 7 weeks of age and were fed chow containing 0.1% to 1.0% ONO-4817 from 8 to 14 weeks of age. Mice treated with 0.3% or 1.0% ONO-4817 showed a significantly lower incidence of the development of adenomyosis than vehicle-treated mice. To evaluate the inhibitory effects of ONO-4817 on the progression of the invasion of the adenomyotic tissues, mice receiving PG grafts at 7 weeks of age were treated with 1.0% ONO-4817 from 13 to 17 weeks of age. The degree of pathological progression of adenomyosis was graded from 1 to 5 in increments of 1. The degree of the progression of the lesion was less in the uteri exposed to ONO-4817 (2.71 +/- 0.93) than in the uteri not exposed to the inhibitor (4.33 +/- 0.75). Finally, the invasiveness of endometrial stromal cells obtained from adenomyotic uteri into Matrigel consisting mainly of type IV collagen and laminin was examined using an invasion assay. The assay showed that the treatment with ONO-4817 markedly suppressed the invasion of the stromal cells of the adenomyotic uteri into the gel. These results indicate that ONO-4817 may be an effective inhibitor of the development of adenomyosis.  相似文献   
307.
308.
The radA gene predicted to be responsible for homologous recombination in a hyperthermophilic archaeon, Desulfurococcus amylolyticus, was cloned, sequenced, and overexpressed in Escherichia coli cells. The deduced amino acid sequence of the gene product, RadA, was more similar to the human Rad51 protein (65% homology) than to the E. coli RecA protein (35%). A highly purified RadA protein was shown to exclusively catalyze single-stranded DNA-dependent ATP hydrolysis, which monitored presynaptic recombinational complex formation, at temperatures above 65 degrees C (catalytic rate constant of 1.2 to 2.5 min(-1) at 80 to 95 degrees C). The RadA protein alone efficiently promoted the strand exchange reaction at the range of temperatures from 80 to 90 degrees C, i.e., at temperatures approaching the melting point of DNA. It is noteworthy that both ATP hydrolysis and strand exchange are very efficient at temperatures optimal for host cell growth (90 to 92 degrees C).  相似文献   
309.
Wolbachia species are intracellular bacteria known to cause reproductive abnormalities in their hosts. In this study, we identified Wolbachia genes encoding homologs to the type IV secretion system by which many pathogenic bacteria secrete macromolecules. The genes identified encoded most of the essential components of the secretion system and were cotranscribed as an operon.  相似文献   
310.
UvrA and UvrB proteins play key roles in the damage recognition step in the nucleotide excision repair. However, the molecular mechanism of damage recognition by these proteins is still not well understood. In this work we analyzed the interaction between single-stranded DNA (ssDNA) labeled with a fluorophore tetramethylrhodamine (TMR) and Thermus thermophilus HB8 UvrA (ttUvrA) and UvrB (ttUvrB) proteins. TMR-labeled ssDNA (TMR-ssDNA) as well as UV-irradiated ssDNA stimulated ATPase activity of ttUvrB more strongly than did normal ssDNA, indicating that this fluorescent ssDNA was recognized as damaged ssDNA. The addition of ttUvrA or ttUvrB enhanced the fluorescence intensity of TMR-ssDNA, and the intensity was much greater in the presence of ATP. Fluorescence titration indicated that ttUvrA has higher specificity for TMR-ssDNA than for normal ssDNA in the absence of ATP. The ttUvrB showed no specificity for TMR-ssDNA, but it took over 200 min for the fluorescence intensity of the ttUvrB-TMR-ssDNA complex to reach saturation in the presence of ATP. This time-dependent change could be separated into two phases. The first phase was rapid, whereas the second phase was slow and dependent on ATP hydrolysis. Time dependence of ATPase activity and fluorescence polarization suggested that changes other than the binding reaction occurred during the second phase. These results strongly suggest that ttUvrB binds ssDNA quickly and that a conformational change in ttUrvB-ssDNA complex occurs slowly. We also found that DNA containing a fluorophore as a lesion is useful for directly investigating the damage recognition by UvrA and UvrB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号