首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   31篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2014年   8篇
  2013年   10篇
  2012年   12篇
  2011年   21篇
  2010年   12篇
  2009年   7篇
  2008年   20篇
  2007年   18篇
  2006年   11篇
  2005年   17篇
  2004年   17篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   13篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1992年   8篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1967年   7篇
  1966年   2篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
141.
We investigated the effects of puromycin on mouse oocyte chromosomes during meiotic maturation in vitro. Puromycin treatment for 6 hr at 100 μg/ml almost completely, but reversibly, suppressed [35S]methionine incorporation into oocyte protein at all stages of maturation tested. Nevertheless, oocytes treated at the germinal vesicle stage underwent germinal vesicle breakdown (GVBD) and chromosome condensation. These oocytes completed nuclear maturation to metaphase II (MII) if the inhibitor was withdrawn. Prolonged (24-hr) treatment, however, caused the chromsomes to degenerate. The chromosomes of oocytes treated shortly after GVBD for 6 hr remained condensed, but the oocytes failed to form a polar body. However, 24-hr treatment caused the chromosomes to decondense to form an interphase nucleus. Oocytes treated near MI for 6 hr gave off a polar body during the treatment, and their chromosomes decondensed to form a nucleus, which remained as long as the treatment was continued. However, if the puromycin was withdrawn, the chromosomes recondensed to a state morphologically similar to that at MII. Thus, the chromosome decondensation induced by protein synthesis inhibition at MI was reversible. Oocytes treated at MII, several hours after first polar body formation, also underwent chromosome decondensation to form a nucleus. In the continuous presence of puromycin, the chromosomes remained decondensed, but neither DNA synthesis nor mitosis occurred. However, following puromycin withdrawal, these occytes synthesised DNA and underwent mitosis. Thus, protein synthesis inhibition at MII, by parthenogenetically activating the oocytes, caused irreversible chromosome decondensation. Based on these observations, we discussed the roles of protein synthesis in the regulation of oocyte chromosome behaviour during meiotic maturation.  相似文献   
142.
Cytostatic factor (CSF) in the eggs of Xenopus laevis   总被引:3,自引:0,他引:3  
Cytostatic factor (CSF) in unfertilized egg cytoplasm causes metaphase arrest when microinjected into zygotes. This was originally described in Rana pipiens eggs In Xenopus laevis, CSF has also been demonstrated. but only when the calcium-chelating agent, EGTA, was injected into the egg cytoplasm. In the present study, however, CSF was demonstrated in Xenopus eggs when donor egg activation was prevented by treatment with CO2 and Mg2+ instead of by EGTA, and recipient blastomere degeneration was prevented by increasing the KCl in the surrounding medium.  相似文献   
143.
Rapidly growing cells usually have high levels of ribosome biogenesis. The sequential expression of protooncogenes during the transition of quiescent hepatocytes to the replicative stage was assumed to be followed by activation of cellular genes related to cell growth such as ribosome biosynthesis. First, the expression of major nucleolar protein (nucleolin or C23) and major heat-shock protein (hsp 70) genes was examined during rat liver regeneration. hsp 70 may function in cell growth and has a characteristic nucleolar location after heat shock. Both nucleolin and hsp 70 mRNA began to increase simultaneously after peaks of c-fos and c-myc, showed a peak 6 h after partial hepatectomy, and declined to the control levels around 20 h. That is, the peaks of nucleolin and hsp 70 mRNA precede the peak of ribosome formation (12-20 h) and DNA replication (24 h). Second, the behavior of nucleolin and hsp 70 mRNA was examined in primary cultured hepatocytes during their G0-G1 transition. Although the amounts of c-myc mRNA reached a plateau around 20 h after the initiation of culture and remained at these levels, DNA synthesis has never been found to start without the addition of EGF and insulin to this system. Both nucleolin and hsp 70 mRNA began to increase at around 20 h (prereplicative stage) and simultaneously decreased in inverse proportion to DNA synthesis induced by these growth factors. Thus, it is possible that the simultaneous enhancement of nucleolin and hsp 70 genes as described above is not merely coincidental, but is important biologically during the transition of quiescent hepatocytes to proliferative cells.  相似文献   
144.
Meiotic maturation was induced in Xenopus laevis oocytes when the external Ca++ or Mg++ ion concentration was raised above 5 mM in the presence of the ionophore. Ionophore-divalent cation-induced maturation appears to be due to the stimulation of the oocyte itself. Cytoplasm of responding oocytes induced maturation when microinjected into ovarian oocytes. Cycloheximid, an inhibitor of progesterone-induced maturation, inhibited the maturational response induced by the ionophore and divalent cations. Ethidium bromide, an inhibitor of the follicular response to human chorionic gonadotropin, had no effect. The possible roles that Ca++ and Mg++ may play in the initiation of maturation are discussed.  相似文献   
145.
146.
The precise mechanism of the progression of advanced heart failure is unknown. We assessed a new scheme in two heart failure models: (I) congenital dilated cardiomyopathy (DCM) in TO-2 strain hamsters lacking delta-sarcoglycan (SG) gene and (II) administration of a high-dose of isoproterenol, as an acute heart failure in normal rats. In TO-2 hamsters, we followed the time course of the histological, physiological and metabolic the progressions of heart failure to the end stage. Dystrophin localization detected by immunostaining age-dependently to the myoplasm and the in situ sarcolemma fragility evaluated by Evans blue entry was increased in the same cardiomyocytes. Western blotting revealed a limited cleavage of the dystrophin protein at the rod domain, strongly suggesting a contribution of endogenous protease(s). We found a remarkable up-regulation of the amount of calpain-1 and -2, and no change of their counterpart, calpastatin. After supplementing TO-2 hearts with the normal delta-SG gene in vivo, these pathological alterations and the animals' survival improved. Furthermore, dystrophin but not delta-SG was disrupted by a high dose of isoproterenol, translocated from the sarcolemma to the myoplasm and fragmented. These results of heart failure, irrespective of the hereditary or acquired origin, indicate a vicious cycle formed by the increased sarcolemma permeability, preferential activation of calpain over calpastatin, and translocation and cleavage of dystrophin would commonly lead to advanced heart failure.  相似文献   
147.
148.
The ndx1 gene, which encodes a Nudix protein, was cloned from the extremely thermophilic bacterium Thermus thermophilus HB8. This gene encodes a 126-amino acid protein that includes the characteristic Nudix motif conserved among Nudix proteins. Ndx1 was overexpressed in Escherichia coli and purified. Ndx1 was stable up to 95 degrees C and at extreme pH. Size exclusion chromatography indicated that Ndx1 was monomeric in solution. Ndx1 specifically hydrolyzed (di)adenosine polyphosphates but not ATP or diadenosine triphosphate, and it always generated ATP as the product. Diadenosine hexaphosphate (Ap(6)A), the most preferred substrate, was hydrolyzed to produce two ATP molecules, which is a novel hydrolysis mode for Ap(6)A, with a K(m) of 1.4 microm and a k(cat) of 4.1 s(-1). These results indicate that Ndx1 is a (di)adenosine polyphosphate hydrolase. Ndx1 activity required the presence of the divalent cations Mn(2+), Mg(2+), Zn(2+), and Co(2+), whereas Ca(2+), Ni(2+), and Cu(2+) were not able to activate Ndx1. Fluoride ion inhibited Ndx1 activity via a non-competitive mechanism. Optimal activity for Ap(6)A was observed at around pH 8.0 and about 70 degrees C. We found two important residues with pK(a) values of 6.1 and 9.6 in the free enzyme and pK(a) values of 7.9 and 10.0 in the substrate-enzyme complex. Kinetic studies of proteins with amino acid substitutions suggested that Glu-46 and Glu-50 were conserved residues in the Nudix motif and were involved in catalysis. Trp-26 was likely involved in enzyme-substrate interactions based on fluorescence measurements. Based on these results, the mechanism of substrate recognition and catalysis are discussed.  相似文献   
149.
Exposure of mice to estrogen or keratinocyte growth factor (KGF) in vivo during the neonatal period results in estrogen-independent persistent proliferation and cornification of the vaginal epithelium when the animals become adults. Here, whether and how KGF-signaling is involved in the effects of estrogen on the neonatal mouse vagina were studied with an in vitro method. Newborn mouse vaginae were cultured for 3 days in serum-free medium containing various combinations of estradiol-17 (E2), KGF, anti-KGF antibody, KGFR inhibitory peptide and heparin, and then transplanted into ovariectomized host mice for 35 days. The vaginae cultured with 5 g/ml E2 or 5 g/ml KGF had a cornified thick epithelium, while the epithelium of the vehicle-treated controls stayed thin. The E2 effect was blocked by concurrent treatment with anti-KGF antibody or KGFR inhibitory peptide. KGF treatment alone at doses less than 500 ng/ml did not induce permanent vaginal changes but such changes did occur in vaginae treated with heparin plus as little as 10 ng/ml KGF. On the other hand, heparin inhibited the permanent vaginal changes induced by estrogen. These results suggest that irreversible vaginal changes are induced by the direct action of KGF on the developing vagina and that the developmental estrogenization syndrome of mouse vagina is caused by intensification of endogenous KGF/KGFR signaling by exogenous estrogen.This work was supported by Grants-in-Aid for Scientific Research on Priority Areas (A) and for Encouragement of Young Scientists from the Ministry of Education Science, Sports and Culture, Japan to M.M.  相似文献   
150.
This article reviews cell cycle changes that occur during midblastula transition (MBT) in Xenopus laevis based on research carried out in the authors' laboratory. Blastomeres dissociated from the animal cap of blastulae, as well as those in an intact embryo, divide synchronously with a constant cell cycle duration in vitro, up to the 12th cell cycle regardless of their cell sizes. During this synchronous cleavage, cell sizes of blastomeres become variable because of repeated unequal cleavage. After the 12th cell cycle blastomeres require contact with an appropriate protein substrate to continue cell division. When nucleocytoplasmic (N/C) ratios of blastomeres reach a critical value during the 13th cycle, their cell cycle durations lengthen in proportion to the reciprocal of cell surface areas, and cell divisions become asynchronous due to variations in cell sizes. The same changes occur in haploid blastomeres with a delay of one cell cycle. Thus, post-MBT cell cycle control becomes dependent not only on the N/C relation but also on cell surface activities of blastomeres. Unlike cell cycle durations of pre-MBT blastomeres, which show monomodal frequency distributions with a peak at about 30 min, those of post-MBT blastomeres show polymodal frequency distributions with peaks at multiples of about 30 min, suggesting 'quantisement' of the cell cycle. Thus, we hypothesised that MPF is produced periodically during its unit cycle with 30 min period, but it titrates, and is neutralized by, an inhibitor contained in the nucleus in a quantity proportional to the genome size; however, when all of the inhibitor has been titrated, excess MPF during the last cycle triggers mitosis. At MBT, cell cycle checkpoint mechanisms begin to operate. While the operation of S phase checkpoint to monitor DNA replication is initiated by N/C relation, the initiation of M phase checkpoint operation to monitor chromosome segregation at mitosis is regulated by an age-dependent mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号