首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   80篇
  2017年   5篇
  2016年   6篇
  2015年   16篇
  2014年   9篇
  2013年   11篇
  2012年   15篇
  2011年   23篇
  2010年   21篇
  2009年   18篇
  2008年   27篇
  2007年   26篇
  2006年   31篇
  2005年   29篇
  2004年   22篇
  2003年   29篇
  2002年   29篇
  2001年   31篇
  2000年   21篇
  1999年   35篇
  1998年   11篇
  1997年   12篇
  1996年   8篇
  1995年   8篇
  1994年   7篇
  1993年   5篇
  1992年   18篇
  1991年   16篇
  1990年   11篇
  1989年   14篇
  1988年   24篇
  1987年   15篇
  1986年   13篇
  1985年   10篇
  1984年   14篇
  1983年   10篇
  1982年   7篇
  1981年   12篇
  1980年   7篇
  1979年   5篇
  1978年   6篇
  1976年   7篇
  1975年   6篇
  1974年   15篇
  1973年   5篇
  1972年   12篇
  1971年   9篇
  1970年   12篇
  1967年   7篇
  1966年   9篇
  1965年   5篇
排序方式: 共有769条查询结果,搜索用时 31 毫秒
151.
Abeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures. We report solid-state NMR studies of Abeta(25-35) in model lipid membrane systems of anionic phospholipids and cholesterol, and compare structural changes to those of Abeta(1-42). When added after vesicle formation, Abeta(25-35) was found to interact with the lipid headgroups and slightly perturb the lipid acyl-chain region; when Abeta(25-35) was included during vesicle formation, it inserted deeper into the bilayer. While Abeta(25-35) retained the same beta-sheet structure irrespective of the mode of addition, the longer Abeta(1-42) appeared to have an increase in beta-sheet structure at the C-terminus when added to phospholipid liposomes after vesicle formation. Since the Abeta(25-35) fragment is also neurotoxic, the full-length peptide may have more than one pathway for toxicity.  相似文献   
152.
L Zhang  H Wang  S C Masters  B Wang  J T Barbieri  H Fu 《Biochemistry》1999,38(37):12159-12164
Exoenzyme S (ExoS) is a mono-ADP-ribosyltransferase secreted by the opportunistic pathogen Pseudomonas aeruginosa. ExoS requires a eukaryotic factor, the 14-3-3 protein, for enzymatic activity. Here, two aspects of the activation of the ADP-ribosyltransferase activity of ExoS by 14-3-3 proteins are examined. Initial studies showed that several isoforms of 14-3-3, including beta, zeta, eta, sigma, and tau, activated ExoS with similar efficiency. This implicates a conserved structure in 14-3-3 that contributes to the interaction between 14-3-3 and ExoS. One candidate structure is the conserved amphipathic groove that mediates the 14-3-3/Raf-1 interaction. The next series of experiments examined the role of individual amino acids of the amphipathic groove of 14-3-3 zeta in ExoS activation and showed that ExoS activation required the basic residues lining the amphipathic groove of 14-3-3 zeta without extensive involvement of the hydrophobic residues. Strikingly, mutations of Val-176 of 14-3-3 zeta that disrupted its interaction with Raf-1 did not affect the binding and activation of ExoS by 14-3-3. Thus, ExoS selectively employs residues in the Raf-binding groove for its association with 14-3-3 proteins.  相似文献   
153.
The amyloid beta-protein precursor (APP) of Alzheimer's disease (AD) is cleaved either by alpha-secretase to generate an N-terminally secreted fragment, or by beta- and gamma-secretases to generate the beta-amyloid protein (Abeta). The accumulation of Abeta in the brain is an important step in the pathogenesis of AD. Alternative mRNA splicing can generate isoforms of APP which contain a Kunitz protease inhibitor (KPI) domain. However, little is known about the physiological function of this domain. In the present study, the metabolic turnover of APP was examined in cultured chick sympathetic neurons. APP was labelled by incubating neurons for 5 h with [35S]methionine and [35S]cysteine. Intracellular labelled APP decayed in a biphasic pattern suggesting that trafficking occurs through two metabolic compartments. The half-lives for APP in each compartment were 1.5 and 5.7 h, respectively. A small fraction (10%) of the total APP was secreted into the culture medium where it was degraded with a half-life of 9 h. Studies using specific protease inhibitors demonstrated that this extracellular breakdown was due to cleavage by a trypsin-like serine protease that was secreted into the culture medium. Significantly, this protease was inhibited by a recombinant isoform of APP (sAPP751), which contains a region homologous to the Kunitz protease inhibitor (KPI) domain. These results suggest that KPI forms of APP regulate extracellular cleavage of secreted APP by inhibiting the activity of a secreted APP-degrading protease.  相似文献   
154.
155.
Cell based models used for the study of prion diseases have traditionally employed mouse-adapted strains of sheep scrapie prions. To date, attempts to generate human prion propagation in cell culture have been unsuccessful. Rabbit kidney epithelial cells (RK13) are permissive to infection with prions from a variety of species upon expression of cognate PrP transgenes. We explored RK13 cells expressing human PrP for their utility as a cell line capable of sustaining infection with human prions. RK13 cells processed exogenously expressed human PrP similarly to exogenously expressed mouse PrP but were not permissive to infection when exposed to sporadic Creutzfeldt-Jakob disease prions. Transmission of the same sporadic Creutzfeldt Jakob disease prions to wild-type mice generated a strain of mouse-adapted human prions, which efficiently propagated in RK13 cells expressing mouse PrP, demonstrating these cells are permissive to infection by mouse-adapted human prions. Our observations underscore the likelihood that, in contrast to prions derived from non-human mammals, additional unidentified cofactors or subcellular environment are critical for the generation of human prions.  相似文献   
156.
Development of a comprehensive therapeutic treatment for the neurodegenerative Alzheimer's disease (AD) is limited by our understanding of the underlying biochemical mechanisms that drive neuronal failure. Numerous dysfunctional mechanisms have been described in AD, ranging from protein aggregation and oxidative stress to biometal dyshomeostasis and mitochondrial failure. In this review we discuss the critical role of amyloid-beta (A beta) in some of these potential mechanisms of neurodegeneration. The 39-43 amino acid A beta peptide has attracted intense research focus since it was identified as a major constituent of the amyloid deposits that characterise the AD brain, and it is now widely recognised as central to the development of AD. Familial forms of AD involve mutations that lead directly to altered A beta production from the amyloid-beta A4 precursor protein, and the degree of AD severity correlates with specific pools of A beta within the brain. A beta contributes directly to oxidative stress, mitochondrial dysfunction, impaired synaptic transmission, the disruption of membrane integrity, and impaired axonal transport. Further study of the mechanisms of A beta mediated neurodegeneration will considerably improve our understanding of AD, and may provide fundamental insights needed for the development of more effective therapeutic strategies.  相似文献   
157.
Loss of intracellular neuronal glutathione (GSH) is an important feature of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The consequences of GSH depletion include increased oxidative damage to proteins, lipids, and DNA and subsequent cytotoxic effects. GSH is also an important modulator of cellular copper (Cu) homeostasis and altered Cu metabolism is central to the pathology of several neurodegenerative diseases. The cytotoxic effects of Cu in cells depleted of GSH are not well understood. We have previously reported that depletion of neuronal GSH levels results in cell death from trace levels of extracellular Cu due to elevated Cu(I)-mediated free radical production. In this study we further examined the molecular pathway of trace Cu toxicity in neurons and fibroblasts depleted of GSH. Treatment of primary cortical neurons or 3T3 fibroblasts with the glutathione synthetase inhibitor buthionine sulfoximine resulted in substantial loss of intracellular GSH and increased cytotoxicity. We found that both neurons and fibroblasts revealed increased expression and activation of p53 after depletion of GSH. The increased p53 activity was induced by extracellular trace Cu. Furthermore, we showed that in GSH-depleted cells, Cu induced an increase in oxidative stress resulting in DNA damage and activation of p53-dependent cell death. These findings may have important implications for neurodegenerative disorders that involve GSH depletion and aberrant Cu metabolism.  相似文献   
158.
Sexual selection theory posits that ornamental traits can evolve if they provide individuals with an advantage in securing multiple mates. That male ornamentation occurs in many bird species in which males pair with a single female is therefore puzzling. It has been proposed that extra-pair mating can substantially increase the variance in reproductive success among males in monogamous species, thus increasing the potential for sexual selection. We documented the frequency of extra-pair paternity and examined its effect on variation in male reproductive success in the mountain bluebird Sialia currucoides , a socially monogamous songbird in which males possess brilliant plumage ornamentation. Extra-pair paternity was common in our Wyoming study population, with 72% of broods containing at least one extra-pair offspring. The standardized variance in actual male reproductive success (i.e., the total number of within-pair and extra-pair offspring sired) was more than seven times higher than the variation in apparent success (i.e., success assuming that no extra-pair mating occurred). Success at siring within-pair and extra-pair offspring both contributed to the variation in overall male reproductive success. Within-pair success, however, did not predict a male's level of extra-pair success, suggesting that males do not sacrifice within-pair paternity to gain extra-pair paternity. Calculation of the sexual selection (Bateman) gradient showed that males sire approximately two additional offspring for each extra-pair mate that we identified. Thus, in this sexually dichromatic species, extra-pair mating increases the variance in male reproductive success and provides the potential for sexual selection to act.  相似文献   
159.
Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. β- and γ-secretases, and Aβ have been identified in lipid rafts in cultured cells, human and rodent brains, but the role of copper in lipid raft amyloidogenic processing is presently unknown. In this study, we found that copper modulates flotillin-2 association with cholesterol-rich lipid raft domains, and consequently Aβ synthesis is attenuated via copper-mediated inhibition of APP endocytosis. We also found that total cellular copper is associated inversely with lipid raft copper levels, so that under intracellular copper deficiency conditions, Aβ·copper complexes are more likely to form. This explains the paradoxical hypermetallation of Aβ with copper under tissue copper deficiency conditions in AD.Imbalance of metal ions has been recognized as one of the key factors in the pathogenesis of Alzheimer disease (AD).2 Aberrant interactions between copper or zinc with the β-amyloid peptide (Aβ) released into the glutamatergic synaptic cleft vicinity could result in the formation of toxic Aβ oligomers and aggregation into plaques characteristic of AD brains (reviewed in Ref. 1). Copper, iron, and zinc are highly concentrated in extracellular plaques (2, 3), and yet brain tissues from AD (46) and human β-amyloid precursor protein (APP) transgenic mice (710) are paradoxically copper deficient compared with age-matched controls. Elevation of intracellular copper levels by genetic, dietary, and pharmacological manipulations in both AD transgenic animal and cell culture models is able to attenuate Aβ production (7, 9, 1115). However, the underlying mechanism is at present unclear.Abnormal cholesterol metabolism is also a contributing factor in the pathogenesis of AD. Hypercholesterolemia increases the risk of developing AD-like pathology in a transgenic mouse model (16). Epidemiological and animal model studies show that a hypercholesterolemic diet is associated with Aβ accumulation and accelerated cognitive decline, both of which are further aggravated by high dietary copper (17, 18). In contrast, biochemical depletion of cholesterol using statins, inhibitors of 3-hydroxy-3-methyglutaryl coenzyme A reductase, and methyl-β-cyclodextrin, a cholesterol sequestering agent, inhibit Aβ production in animal and cell culture models (1925).Cholesterol is enriched in lipid rafts, membrane microdomains implicated in Aβ generation from APP cleavage by β- and γ-secretases. Recruitment of BACE1 (β-secretase) into lipid rafts increases the production of sAPPβ and Aβ (23, 26). The β-secretase-cleaved APP C-terminal fragment (β-CTF), and γ-secretase, a multiprotein complex composed of presenilin (PS1 or PS2), nicastrin (Nct), PEN-2 and APH-1, colocalize to lipid rafts (27). The accumulation of Aβ in lipid rafts isolated from AD and APP transgenic mice brains (28) provided further evidence that cholesterol plays a role in APP processing and Aβ generation.Currently, copper and cholesterol have been reported to modulate APP processing independently. However, evidence indicates that, despite tissue copper deficiency, Aβ·Cu2+ complexes form in AD that catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides (e.g. hydroxynonenal and malondialdehyde), which contribute to oxidative damage observed in AD (2935). The underlying mechanism leading to the formation of pathological Aβ·Cu2+ complexes is unknown. In this study, we show that copper alters the structure of lipid rafts, and attenuates Aβ synthesis in lipid rafts by inhibition of APP endocytosis. We also identify a paradoxical inverse relationship between total cellular copper levels and copper distribution to lipid rafts, which appear to possess a privileged pool of copper where Aβ is more likely to interact with Cu2+ under copper-deficiency conditions to form Aβ·Cu2+ complexes. These data provide a novel mechanism by which cellular copper deficiency in AD could foster an environment for potentially adverse interactions between Aβ, copper, and cholesterol in lipid rafts.  相似文献   
160.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-β (Aβ) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Aβ is formed is a membrane-bound protein, and Aβ production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Aβ/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号