首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   55篇
  2024年   1篇
  2023年   2篇
  2022年   12篇
  2021年   17篇
  2020年   17篇
  2019年   16篇
  2018年   17篇
  2017年   21篇
  2016年   32篇
  2015年   69篇
  2014年   59篇
  2013年   65篇
  2012年   89篇
  2011年   85篇
  2010年   67篇
  2009年   57篇
  2008年   71篇
  2007年   58篇
  2006年   52篇
  2005年   45篇
  2004年   43篇
  2003年   40篇
  2002年   28篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
排序方式: 共有990条查询结果,搜索用时 15 毫秒
71.
Leptin is a peptide hormone which acts on cells of immune system by influencing the production of cytokines. Serum leptin levels and cytokine production by peripheral blood mononuclear cells (PBMC) were measured in 18 secondary progressive multiple sclerosis (SPMS) patients under IFN-beta-1b treatment. There were no overall effects on leptin, interleukin-6 (IL-6), IL-10 and IL-12 p40 after 2, 6 and 12 months of treatment. However, leptin and IL-6 decreased after 6 and 12 months of treatment in 12 patients who did not show progression of disability. Thus, our pilot data show that the beneficial effect of IFN-beta on some SPMS patients might be associated with the reduced levels of leptin and reduced IL-6 production by PBMC.  相似文献   
72.
Forty-one Tnpho A mutants of Vibrio cholerae O1 classical strain CD81 were analyzed for their ability to interact with chitin particles, Tigriopus fulvus copepods and the Intestine 407 cell line compared to the parent strain. Thirteen mutants were less adhesive than CD81; in particular, T21, T33 and T87 were less adhesive towards all substrates and insensitive to inhibition by N-acetyl glucosamine (GlcNAc). By SDS-PAGE analysis of sarkosyl-insoluble membrane proteins (siMPs) isolated from mutants and parent, it was found that a 53 kDa siMP is missing in T21, T33 and T87 mutants. It is hypothesized that this protein might have the function to mediate adherence to GlcNAc-containing substrates both in the aquatic environment and in human intestine.  相似文献   
73.
74.
75.
We characterized the effect of chronic ochratoxin A (OTA) on rat kidney cortex, analyzing collagen content and collagen turnover and the major markers of epithelial-to-mesenchymal transition (EMT), such as alpha-smooth muscle actin (alphaSMA), cadherins, and MMP-9. Because OTA nephrotoxicity is mediated by free radicals, we also investigated whether antioxidants in red wine provided protection for the kidney and attenuated OTA-induced EMT. Collagen content, determined by computerized analysis of Sirius red-stained kidney sections, increased in OTA, OTA-wine, and OTA-EtOH treated rats. In kidney cortex homogenates, COL-I and COL-III mRNA levels tended to rise in OTA treated rats, but were similar to CT after OTA-wine and OTA-EtOH administration. TIMP-1 gene expression was up-regulated in OTA, OTA-wine, and OTA-EtOH treated rats. LH2b mRNA/COL-I mRNA was significantly up-regulated in OTA-wine and OTA-EtOH treated rats, compared with CT and OTA alone. TGF-beta1 signaling tended to dominate after OTA, OTA-wine, and OTA-EtOH. MMP-1 protein levels were not affected. OTA induced proMMP-9 and alphaSMA overexpression, decreases of E-cadherin and N-cadherin, and DSC-2 up-regulation. OTA-wine caused a further, unexpected decrease of E- and N-cadherins and further up-regulation of OTA-induced DSC-2, while strongly reducing the OTA-induced increases of alphaSMA and proMMP-9. Posttranslational collagen modifications, such as decreased collagen degradation through MMP inhibition and increased collagen cross-links, seem to be key mechanisms leading to OTA-induced kidney cortex fibrosis. This mechanism was not affected by red wine in these conditions. Red wine seems to have some protective role against OTA-induced EMT, although without completely blocking the process and determining a condition in which abundant cells display an intermediate translational phenotype, but there are no alphaSMA or epithelial markers.  相似文献   
76.
1-Amino-1-deoxygalactose (12%, mole) has been chemically introduced on a mannuronan sample via an N-glycosidic bond involving the uronic group of the mannuronic acid (M) residues. The unsubstituted M residues in the modified polymer were converted into guluronic moieties (G) by the use of two C-5 epimerases, resulting in an alginate-like molecule selectively modified on M residues. The molecular details of the newly formed polymer, in terms of both composition and molecular dimensions, were disclosed by use of (1)H NMR, intrinsic viscosity, and high-performance size-exclusion chromatography-multiple-angle laser light scattering (HPSEC-MALLS). Circular dichroism has revealed that the modified alginate-like polymer obtained after epimerization was able to bind calcium due to the introduction of alternating and homopolymeric G sequences. The gel-forming ability of this M-selectively modified material was tested and compared with an alginate sample containing 14% galactose introduced on G residues. Mechanical spectroscopy pointed out that the modified epimerized material was able to form stable gels and that the kinetics of the gel formation was similar to that of the unsubstituted sample. In contrast, the G-modified alginate samples showed a slower gel formation, eventually leading to gel characterized by a reduced storage modulus. The advantage of the selective modification on M residues was confirmed by measuring the Young's modulus of gel cylinders of the different samples. Furthermore, due to the high content in alternating sequences, a marked syneresis was disclosed for the modified-epimerized sample. Finally, calcium beads obtained from selectively M-modified alginate showed a higher stability than those from the G-modified alginate, as evaluated upon treatment with nongelling ions.  相似文献   
77.
Bacillus pasteurii UreG, a chaperone involved in the urease active site assembly, was overexpressed in Escherichia coli BL21(DE3) and purified to homogeneity. The identity of the recombinant protein was confirmed by SDS-PAGE, protein sequencing, and mass spectrometry. A combination of size exclusion chromatography and multiangle and dynamic laser light scattering established that BpUreG is present in solution as a dimer. Analysis of circular dichroism spectra indicated that the protein contains large portions of helices (15%) and strands (29%), whereas NMR spectroscopy indicated the presence of conformational fluxionality of the protein backbone in solution. BpUreG catalyzes the hydrolysis of GTP with a kcat=0.04 min(-1), confirming a role for this class of proteins in coupling energy requirements and nickel incorporation into the urease active site. BpUreG binds two Zn2+ ions per dimer, with a KD=42 +/- 3 microm, and has a 10-fold lower affinity for Ni2+. A structural model for BpUreG was calculated by using threading algorithms. The protein, in the fully folded state, features the typical structural architecture of GTPases, with an open beta-barrel surrounded by alpha-helices and a P-loop at the N terminus. The protein dynamic behavior observed in solution is critically discussed relative to the structural model, using algorithms for disorder predictions. The results suggest that UreG proteins belong to the class of intrinsically unstructured proteins that need the interaction with cofactors or other protein partners to perform their function. It is also proposed that metal ions such as Zn2+ could have important structural roles in the urease activation process.  相似文献   
78.
During sporulation and meiosis of budding yeast a developmental program determines the formation of the new plasma membranes of the spores. This process of prospore membrane (PSM) formation leads to the formation of meiotic daughter cells, the spores, within the lumen of the mother cell. It is initiated at the spindle pole bodies during meiosis II. Spore formation, but not meiotic cell cycle progression, requires the function of phospholipase D (PLD/Spo14). Here we show that PLD/Spo14 forms a complex with Sma1, a meiotically expressed protein essential for spore formation. Detailed analysis revealed that both proteins are required for early steps of prospore membrane assembly but with distinct defects in the respective mutants. In the Deltaspo14 mutant the initiation of PSM formation is blocked and aggregated vesicles of homogenous size are detected at the spindle pole bodies. In contrast, initiation of PSM formation does occur in the Deltasma1 mutant, but the enlargement of the membrane is impaired. During PSM growth both Spo14 and Sma1 localize to the membrane, and localization of Spo14 is independent of Sma1. Biochemical analysis revealed that Sma1 is not necessary for PLD activity per se and that PLD present in a complex with Sma1 is highly active. Together, our results suggest that yeast PLD is involved in two distinct but essential steps during the regulated vesicle fusion necessary for the assembly of the membranous encapsulations of the spores.  相似文献   
79.
We report the results of an extended molecular dynamics simulation on the migration of photodissociated carbon monoxide in wild-type sperm whale myoglobin. Our results allow following one possible ligand migration dynamics from the distal pocket to the Xe1 cavity via a path involving the other xenon binding cavities and momentarily two additional packing defects along the pathway. Comparison with recent time resolved structural data obtained by Laue crystallography with subnanosecond to millisecond resolution shows a more than satisfactory agreement. In fact, according to time resolved crystallography, CO, after photolysis, can occupy the Xe1 and Xe4 cavities. However, no information on the trajectory of the ligand from the distal pocket to the Xe1 is available. Our results clearly show one possible path within the protein. In addition, although our data refer to a single trajectory, the local dynamics of the ligand in each cavity is sufficiently equilibrated to obtain local structural and thermodynamic information not accessible to crystallography. In particular, we show that the CO motion and the protein fluctuations are strictly correlated: free energy calculations of the migration between adjacent cavities show that the migration is not a simple diffusion but is kinetically or thermodynamically driven by the collective motions of the protein; conversely, the protein fluctuations are influenced by the ligand in such a way that the opening/closure of the passage between adjacent cavities is strictly correlated to the presence of CO in its proximity. The compatibility between time resolved crystallographic experiments and molecular dynamics simulations paves the way to a deeper understanding of the role of internal dynamics and packing defects in the control of ligand binding in heme proteins.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号