首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   53篇
  2024年   1篇
  2023年   2篇
  2022年   12篇
  2021年   17篇
  2020年   17篇
  2019年   15篇
  2018年   16篇
  2017年   19篇
  2016年   32篇
  2015年   68篇
  2014年   57篇
  2013年   65篇
  2012年   87篇
  2011年   82篇
  2010年   66篇
  2009年   51篇
  2008年   68篇
  2007年   54篇
  2006年   49篇
  2005年   44篇
  2004年   42篇
  2003年   31篇
  2002年   24篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
排序方式: 共有936条查询结果,搜索用时 406 毫秒
211.
212.
Although the underlying mechanisms of longevity are not fully understood, it is known that mutation in genes that share similarities with those in humans involved in the insulin/insulin-like growth factor I (IGF-I) signal response pathway can significantly extend life span in diverse species, including yeast, worms, fruit flies, and rodents. Intriguingly, the long-lived mutants, ranging from yeast to mice, share some important phenotypic characteristics, including reduced insulin signaling, enhanced sensitivity to insulin, and reduced IGF-I plasma levels. Such genetic homologies and phenotypic similarities between insulin/IGF-I pathway mutants raise the possibility that the fundamental mechanism of aging may be evolutionarily conserved from yeast to mammals. Very recent findings also provide novel and intriguing evidence for the involvement of insulin and IGF-I in the control of aging and longevity in humans. In this study, we focus on how the insulin/IGF-I pathway controls yeast, nematode, fruit fly, and rodent life spans and how it is related to the aging process in humans to outline the prospect of a unifying mechanism in the genetics of longevity.  相似文献   
213.
Deregulation of the inflammatory response plays a major role in the age-related decline of physical performance. The causal pathway leading from inflammation to disability has not been fully clarified, but several researches suggest that interleukin-6 (IL-6) causes a reduction of physical performance in elderly through its effect on muscle function. In vitro studies demonstrated that IL-6 inhibits the secretion of insulin-like growth factor I (IGF-I) and its biological activity, suggesting that the negative effect of IL-6 on muscle function might be mediated through IGF-I. We evaluated the joint effect of IGF-I and IL-6 on muscle function in a population-based sample of 526 persons with a wide age range (20-102 yr). After adjusting for potential confounders, such as age, sex, body mass index, IL-6 receptor, and IL-6 promoter polymorphism, IL-6, IGF-I, and their interaction were significant predictors of handgrip and muscle power. In analyses stratified by IL-6 tertiles, IGF-I was an independent predictor of muscle function only in subjects in the lowest IL-6 tertile, suggesting that the effect of IGF-I on muscle function depends on IL-6 levels. This mechanism may explain why IL-6 is a strong risk factor for disability.  相似文献   
214.
Intracellular pH, an important modulator of cell function, is regulated by plasmalemmal proteins that transport H(+), or its equivalent, into or out of the cell. The pH(i) is also stabilised by high-capacity, intrinsic buffering on cytoplasmic proteins, oligopeptides and other solutes, and by the extrinsic CO(2)/HCO(3)(-) (carbonic) buffer. As mobility of these buffers is lower than for the H(+) ion, they restrict proton diffusion. In this paper we use computational approaches, based on the finite difference and finite element methods (FDM and FEM, respectively), for analysing the spatio-temporal behaviour of [H(+)] when it is locally perturbed. We analyse experimental data obtained for various cell-types (cardiac myocytes, duodenal enterocytes, molluscan neurons) where pH(i) has been imaged confocally using intracellular pH-sensitive dyes. We design mathematical algorithms to generate solutions for two-dimensional diffusion that fit data in terms of an apparent intracellular H(+) diffusion coefficient, D(H)(app). The models are used to explore how the spatial distribution of [H(+)](i) is affected by membrane H(+)-equivalent transport and by cell geometry. We then develop a mechanistic model, describing spatio-temporal changes of [H(+)](i) in a cardiac ventricular myocyte in terms of H(+)-shuttling on mobile buffers and H(+)-anchoring on fixed buffers. We also discuss how modelling may include the effects of extrinsic carbonic-buffering. Overall, our computational approach provides a framework for future analyses of the physiological consequences of pH(i) non-uniformity.  相似文献   
215.
216.
UreE is a metallo-chaperone assisting the incorporation of two adjacent Ni(2+) ions in the active site of urease. This study describes an attempt to distill general information on this protein using a computational post-genomic approach for the understanding of the structural details of the molecular function of UreE in nickel trafficking. The two crystal structures recently determined for UreE from Bacillus pasteurii (BpUreE) and Klebsiella aerogenes (KaUreE) were comparatively analyzed. This analysis provided insights into the protein structural and conformational features. A structural database of UreE proteins from a large number of different genomes was built using homology modeling. All available sequences of UreE were retrieved from protein and cDNA databases, and their structures were modeled on the crystal structures of BpUreE and KaUreE. A self-consistent iterative protocol was devised for multiple sequence alignment optimization involving secondary structure prediction and evaluation of the energy features of the obtained modeled structures. The quality of all models was tested using standard assessment procedures. The final optimized structure-based multiple alignment and the derived model structures provided insightful information on the evolutionary conservation of key residues in the protein sequence and surface patches presumably involved in protein recognition during the urease active site assembly.  相似文献   
217.
The interactions of chicken liver basic fatty acid-binding protein (Lb-FABP) with large unilamellar vesicles (LUVs) of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) were studied by binding assays, Fourier transform infrared (FT-IR) spectroscopy, monolayers at air-water interface, and low-angle X-ray diffraction. Lb-FABP binds to POPG LUVs at low ionic strength but not at 0.1 M NaCl. The infrared (IR) spectra of the POPG membrane-bound protein showed a decrease of the band corresponding to beta-structures as compared to the protein in solution. In addition, a cooperative decrease of the beta-edge band above 70 degrees C in solution was also evident, while the transition was less cooperative and took place at lower temperature for the POPG membrane-bound protein. Low- and wide-angle X-ray diffraction experiments with lipid multilayers indicate that binding of the protein produces a rearrangement of the membrane structure, increasing the interlamellar spacing and decreasing the compactness of the lipids.  相似文献   
218.
The metastasis-suppressive activity of Nm23-H1 was previously correlated with its in vitro histidine protein kinase activity, but physiological substrates have not been identified. We hypothesized that proteins that interact with histidine kinases throughout evolution may represent partners for Nm23-H1 and focused on the interaction of Arabidopsis "two-component" histidine kinase ERS with CTR1. A mammalian homolog of CTR1 was previously reported to be c-Raf; we now report that CTR1 also exhibits homology to the kinase suppressor of Ras (KSR), a scaffold protein for the mitogen-activated protein kinase (MAPK) cascade. Nm23-H1 co-immunoprecipitated KSR from lysates of transiently transfected 293T cells and at endogenous protein expression levels in MDA-MB-435 breast carcinoma cells. Autophosphorylated recombinant Nm23-H1 phosphorylated KSR in vitro. Phosphoamino acid analysis identified serine as the major target, and two peaks of Nm23-H1 phosphorylation were identified upon high performance liquid chromatography analysis of KSR tryptic peptides. Using site-directed mutagenesis, we found that Nm23-H1 phosphorylated KSR serine 392, a 14-3-3-binding site, as well as serine 434 when serine 392 was mutated. Phosphorylated MAPK but not total MAPK levels were reduced in an nm23-H1 transfectant of MDA-MB-435 cells. The data identify a complex in vitro histidine-to-serine protein kinase pathway, which may contribute to signal transduction and metastasis.  相似文献   
219.
We report the clinical, biochemical, and molecular characterization of a patient with a novel defect of cholesterol biosynthesis. This patient presented with a complex phenotype, including multiple congenital anomalies, mental retardation, and liver disease. In the patient's plasma and cells, we found increased levels of lathosterol. The biosynthesis of cholesterol in the patient's fibroblasts was defective, showing a block in the conversion of lathosterol into 7-dehydrocholesterol. The activity of 3beta-hydroxysteroid-Delta(5)-desaturase (SC5D), the enzyme involved in this reaction, was deficient in the patient's fibroblasts. Sequence analysis of the SC5D gene in the patient's DNA, showing the presence of two missense mutations (R29Q and G211D), confirmed that the patient is affected by a novel defect of cholesterol biosynthesis.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号