首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   881篇
  免费   53篇
  2023年   2篇
  2022年   11篇
  2021年   17篇
  2020年   17篇
  2019年   15篇
  2018年   16篇
  2017年   19篇
  2016年   32篇
  2015年   68篇
  2014年   57篇
  2013年   65篇
  2012年   87篇
  2011年   82篇
  2010年   66篇
  2009年   51篇
  2008年   68篇
  2007年   54篇
  2006年   49篇
  2005年   44篇
  2004年   42篇
  2003年   31篇
  2002年   24篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
排序方式: 共有934条查询结果,搜索用时 15 毫秒
101.
NM (nemaline myopathy) is a rare genetic muscle disorder defined on the basis of muscle weakness and the presence of structural abnormalities in the muscle fibres, i.e. nemaline bodies. The related disorder cap myopathy is defined by cap-like structures located peripherally in the muscle fibres. Both disorders may be caused by mutations in the TPM2 gene encoding β-Tm (tropomyosin). Tm controls muscle contraction by inhibiting actin-myosin interaction in a calcium-sensitive manner. In the present study, we have investigated the pathogenetic mechanisms underlying five disease-causing mutations in Tm. We show that four of the mutations cause changes in affinity for actin, which may cause muscle weakness in these patients, whereas two show defective Ca2+ activation of contractility. We have also mapped the amino acids altered by the mutation to regions important for actin binding and note that two of the mutations cause altered protein conformation, which could account for impaired actin affinity.  相似文献   
102.
Segregation of the bacterial multidrug resistance plasmid TP228 requires the centromere-binding protein ParG, the parH centromere, and the Walker box ATPase ParF. The cycling of ParF between ADP- and ATP-bound states drives TP228 partition; ATP binding stimulates ParF polymerization, which is essential for segregation, whereas ADP binding antagonizes polymerization and inhibits DNA partition. The molecular mechanism involved in this adenine nucleotide switch is unclear. Moreover, it is unknown how any Walker box protein polymerizes in an ATP-dependent manner. Here, we describe multiple ParF structures in ADP- and phosphomethylphosphonic acid adenylate ester (AMPPCP)-bound states. ParF-ADP is monomeric but dimerizes when complexed with AMPPCP. Strikingly, in ParF-AMPPCP structures, the dimers interact to create dimer-of-dimer "units" that generate a specific linear filament. Mutation of interface residues prevents both polymerization and DNA segregation in vivo. Thus, these data provide insight into a unique mechanism by which a Walker box protein forms polymers that involves the generation of ATP-induced dimer-of-dimer building blocks.  相似文献   
103.
104.
105.

Background and Aim

Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of miRNA expression and oncogenic pathways.

Methods

Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between cancer types and miRNAs was performed.

Results

The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246 in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers.

Conclusion

MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could play a role in tumor pathogenesis.  相似文献   
106.

Background

Cardiac allograft vasculopathy (CAV) is a major late complication in cardiac transplant recipients and has a relevant impact on outcome of these patients. Aims of this study: to compare, in cardiac transplant recipients patients, the diagnostic value of pressure/volume relationship (ESPVR) during dobutamine stress echocardiography (DSE) for coronary artery disease, assessed by Multislice Computed Tomography (MSCT), and by coronary angiography (CA). We also analyzed any possible relationship between ESPVR and the Health Related Quality of Life of the patients (HRQoL), evaluated by SF–36 questionnaire.

Methods

25 consecutive patients underwent DSE within 24 hours after MSCT coronary angiogram and then they underwent CA. The HRQoL questionnaire was administered to the patients in the settings of DSE. They were followed-up for 6 months.

Results

DSE has a sensitivity in detecting CAV of 67%, specificity of 95%, positive predictive value of 67% and negative predictive value of 95%; DSE with ESPVR has a sensitivity of 100%, specificity of 95%, positive predictive value of 75%, negative predictive value of 100%; MSCT has a sensitivity of 100%; specificity of 82%; positive predictive value of 43%; negative predictive value of 100%. Htx recipients with a flat-biphasic ESPVR, although asymptomatic, perceived a worst HRQoL compared with the up-sloping ESPVR population, and this is statistically significant for the general health (p 0.0004), the vitality (p 0.0013) and the mental health (p 0.021) SF-36 subscale.

Conclusions

Evaluation with DSE and ESPVR is accurate in the clinical control of heart transplant recipients reserving invasive evaluation only for patients with abnormal contractility indexes.  相似文献   
107.
We propose an experimental strategy for highly accurate selection of candidates for bacterial vaccines without using in vitro and/or in vivo protection assays. Starting from the observation that efficacious vaccines are constituted by conserved, surface-associated and/or secreted components, the strategy contemplates the parallel application of three high throughput technologies, i.e. mass spectrometry-based proteomics, protein array, and flow-cytometry analysis, to identify this category of proteins, and is based on the assumption that the antigens identified by all three technologies are the protective ones. When we tested this strategy for Group A Streptococcus, we selected a total of 40 proteins, of which only six identified by all three approaches. When the 40 proteins were tested in a mouse model, only six were found to be protective and five of these belonged to the group of antigens in common to the three technologies. Finally, a combination of three protective antigens conferred broad protection against a panel of four different Group A Streptococcus strains. This approach may find general application as an accelerated and highly accurate path to bacterial vaccine discovery.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号