首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2022年   1篇
  2020年   2篇
  2014年   1篇
  2013年   4篇
  2008年   1篇
  2006年   1篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有17条查询结果,搜索用时 593 毫秒
11.
Ivabradine is a specific heart rate-reducing agent approved as a treatment of chronic stable angina. Its mode of action involves a selective and specific block of HCN channels, the molecular components of sinoatrial "funny" (f)-channels. Different studies suggest that the binding site of ivabradine is located in the inner vestibule of HCN channels, but the molecular details of ivabradine binding are unknown. We thus sought to investigate by mutagenesis and in silico analysis which residues of the HCN4 channel, the HCN isoform expressed in the sinoatrial node, are involved in the binding of ivabradine. Using homology modeling, we verified the presence of an inner cavity below the channel pore and identified residues lining the cavity; these residues were replaced with alanine (or valine) either alone or in combination, and WT and mutant channels were expressed in HEK293 cells. Comparison of the block efficiency of mutant vs WT channels, measured by patch-clamp, revealed that residues Y506, F509 and I510 are involved in ivabradine binding. For each mutant channel, docking simulations correctly explain the reduced block efficiency in terms of proportionally reduced affinity for ivabradine binding. In summary our study shows that ivabradine occupies a cavity below the channel pore, and identifies specific residues facing this cavity that interact and stabilize the ivabradine molecule. This study provides an interpretation of known properties of f/HCN4 channel block by ivabradine such as the “open channel block”, the current-dependence of block and the property of "trapping" of drug molecules in the closed configuration.  相似文献   
12.
A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L g protein –1  day–1 at 30 °C and 4.3 L g protein –1  day–1 at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day–1 at 15 °C) and attached biomass concentration (0.13 gprotein L bioreactor –1 at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors’ knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents.  相似文献   
13.
14.
The voltage dependence of activation of the HCN hyperpolarization-activated cation channels is shifted in inside-out patches by -40 to -60 mV relative to activation in intact cells, a phenomenon referred to as rundown. Less than 20 mV of this hyperpolarizing shift can be due to the influence of the canonical modulator of HCN channels, cAMP. Here we study the role of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in HCN channel rundown, as hydrolysis of PI(4,5)P(2) by lipid phosphatases is thought to underlie rundown of several other channels. We find that bath application of exogenous PI(4,5)P(2) reverses the effect of rundown, producing a large depolarizing shift in HCN2 activation. A synthetic short chain analogue of PI(4,5)P(2), dioctanoyl phosphatidylinositol 4,5-bisphosphate, shifts the HCN2 activation curve to more positive potentials in a dose-dependent manner. Other dioctanoyl phosphatidylinositides with one or more phosphates on the lipid headgroup also shift activation, although phosphatidylinositol (PI) is ineffective. Several lines of evidence suggest that HCN2 is also regulated by endogenous PI(4,5)P(2): (a) blockade of phosphatases slows the hyperpolarizing shift upon patch excision; (b) application of an antibody that binds and depletes membrane PIP(2) causes a further hyperpolarizing shift in activation; (c) the shift in activation upon patch excision can be partially reversed by MgATP; and (d) the effect of MgATP is blocked by wortmannin, an inhibitor of PI kinases. Finally, recordings from rabbit sinoatrial cells demonstrate that diC(8) PI(4,5)P(2) delays the rundown of native HCN currents. Thus, both native and recombinant HCN channels are regulated by PI(4,5)P(2).  相似文献   
15.
16.
Public communication of science is still largely conceptualized within a ‘transfer’ paradigm that describes it as a displacement of results and ideas from the specialists to the lay public, problematizing the public, the media, (sometimes) science, but very rarely the notion of communication itself. This paper is a preliminary attempt to see if the discourse about genes and the genome can help us to problematize the concept of communication in relation to science, rethink our models of public communication of science and, more generally, the metaphors we employ to describe communication. It is suggested that the relationship between science and the public could be understood better by viewing communication through metaphors drawn from contemporary biology, e.g. as ‘cross‐talk’ between the specialist and public discourse or as a ‘double helix’ coupling the two dimensions under certain conditions.  相似文献   
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号