首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   45篇
  2021年   5篇
  2018年   7篇
  2016年   5篇
  2015年   8篇
  2014年   17篇
  2013年   15篇
  2012年   23篇
  2011年   11篇
  2010年   16篇
  2009年   12篇
  2008年   15篇
  2007年   11篇
  2006年   22篇
  2005年   14篇
  2004年   16篇
  2003年   14篇
  2002年   11篇
  2001年   18篇
  2000年   8篇
  1999年   5篇
  1998年   9篇
  1996年   5篇
  1994年   6篇
  1992年   10篇
  1991年   20篇
  1990年   14篇
  1989年   16篇
  1988年   7篇
  1987年   9篇
  1986年   10篇
  1985年   18篇
  1984年   16篇
  1983年   9篇
  1982年   13篇
  1981年   6篇
  1980年   7篇
  1979年   21篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   12篇
  1973年   10篇
  1972年   11篇
  1971年   12篇
  1970年   7篇
  1969年   15篇
  1967年   5篇
  1966年   9篇
  1965年   6篇
排序方式: 共有616条查询结果,搜索用时 265 毫秒
541.
The fitness consequences of deleterious mutations are sometimes greater when individuals are parasitized, hence parasites may result in the more rapid purging of deleterious mutations from host populations. The significance of host deleterious mutations when hosts and parasites antagonistically coevolve (reciprocal evolution of host resistance and parasite infectivity) has not previously been experimentally investigated. We addressed this by coevolving the bacterium Pseudomonas fluorescens and a parasitic bacteriophage in laboratory microcosms, using bacteria with high and low mutation loads. Directional coevolution between bacterial resistance and phage infectivity occurred in all populations. Bacterial population fitness, as measured by competition experiments with ancestral genotypes in the absence of phage, declined with time spent coevolving. However, this decline was significantly more rapid in bacteria with high mutation loads, suggesting the cost of bacterial resistance to phage was greater in the presence of deleterious mutations (synergistic epistasis). As such, resistance to phage was more costly to evolve in the presence of a high mutation load. Consistent with these data, bacteria with high mutation loads underwent less rapid directional coevolution with their phage populations, and showed lower levels of resistance to their coevolving phage populations. These data suggest that coevolution with parasites increases the rate at which deleterious mutations are purged from host populations.  相似文献   
542.
PURPOSE OF REVIEW: Oxysterols, oxidation products of cholesterol, mediate numerous and diverse biological processes. The objective of this review is to explain some of the biochemical and cell biological properties of oxysterols based on their membrane biophysical properties and their interaction with integral and peripheral membrane proteins. RECENT FINDINGS: According to their biophysical properties, which can be distinct from those of cholesterol, oxysterols can promote or inhibit the formation of membrane microdomains or lipid rafts. Oxysterols that inhibit raft formation are cytotoxic. The stereo-specific binding of cholesterol to sterol-sensing domains in cholesterol homeostatic pathways is not duplicated by oxysterols, and some oxysterols are poor substrates for the pathways that detoxify cells of excess cholesterol. The cytotoxic roles of oxysterols are, at least partly, due to a direct physical effect on membranes involved in cholesterol-induced cell apoptosis and raft mediated cell signaling. Oxysterols regulate cellular functions by binding to oxysterol binding protein and oxysterol binding protein-related proteins. Oxysterol binding protein is a sterol-dependent scaffolding protein that regulates the extracellular signal-regulated kinase signaling pathway. According to a recently solved structure for a yeast oxysterol binding protein-related protein, Osh4, some members of this large family of proteins are likely sterol transporters. SUMMARY: Given the association of some oxysterols with atherosclerosis, it is important to identify the mechanisms by which their association with cell membranes and intracellular proteins controls membrane structure and properties and intracellular signaling and metabolism. Studies on oxysterol binding protein and oxysterol binding protein-related proteins should lead to new understandings about sterol-regulated signal transduction and membrane trafficking pathways in cells.  相似文献   
543.
The purpose of this study was to examine the acute effects of static stretching on peak torque (PT) and mean power output (MP) during maximal, voluntary concentric isokinetic leg extensions at 60 and 300 degrees .s(-1) in National Collegiate Athletic Association Division I Women's Basketball players. Eleven members of a women's basketball team volunteered to perform maximal concentric isokinetic leg extensions at 60 and 300 degrees .s(-1) on a calibrated Biodex System 3 dynamometer. After the initial isokinetic testing, the dominant leg extensors were stretched using 1 unassisted and 3 assisted static stretching exercises. The poststretching isokinetic assessments were repeated at 5, 15, 30, and 45 minutes after the static stretching (post-5, post-15, post-30, and post-45). PT (N.m) and MP (W) were recorded by dynamometer software. The results indicated no stretching-related changes in PT (p = 0.161) or MP (p = 0.088) from pre- to poststretching for any of the testing intervals (post-5, post-15, post-30, and post-45). These findings indicated that the static stretching had no impact on PT or MP during maximal, voluntary concentric isokinetic muscle actions in collegiate women's basketball players. In conjunction with previous studies, these findings suggested that trained athletes may be less susceptible to the stretching-induced force deficit than untrained, nonathletes.  相似文献   
544.

Background  

Multiplex Ligation-Dependent Probe Amplification (MLPA) is an application that can be used for the detection of multiple chromosomal aberrations in a single experiment. In one reaction, up to 50 different genomic sequences can be analysed. For a reliable work-flow, tools are needed for administrative support, data management, normalisation, visualisation, reporting and interpretation.  相似文献   
545.

Background  

The New World monkey (Platyrrhini) subfamily Pitheciinae is represented by the genera Pithecia, Chiropotes and Cacajao. In this work we studied the karyotypes of Pithecia irrorata (2n = 48) and Cacajao calvus rubicundus (2n = 45 in males and 2n = 46 in females) by G- and C-banding, NOR staining and chromosome painting using human and Saguinus oedipus whole chromosome probes. The karyotypes of both species were compared with each other and with Chiropotes utahicki (2n = 54) from the literature.  相似文献   
546.
Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.  相似文献   
547.
548.
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.  相似文献   
549.
Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high‐quality genome sequence of watermelon cultivar ‘Charleston Gray’, a principal American dessert watermelon, to complement the existing reference genome from ‘97103’, an East Asian cultivar. Comparative analyses between genomes of ‘Charleston Gray’ and ‘97103’ revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping‐by‐sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high‐quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the ‘Charleston Gray’ genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and Cmucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and Cmucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome‐wide association studies. The high‐quality ‘Charleston Gray’ genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.  相似文献   
550.
Kinetics of spontaneous and plasma-stimulated sphingomyelin transfer   总被引:1,自引:0,他引:1  
The mechanism of transfer of a pyrene-labeled sphingomyelin (PySM) between different lipid compartments was studied by a fluorescence technique. The first-order kinetics are independent of donor and acceptor concentration and the identity of the acceptor; the rates are accelerated by 'structure-breaking' solutes and inhibited by 'structure-making' solutes. These observations are consistent with the transfer of PySM occurring via the aqueous phase that separates the donor and acceptor compartments. We have partially purified a plasma factor that stimulates the transfer rate. Our in vitro results suggest that both spontaneous and stimulated transfer might contribute to the redistribution of sphingomyelin in vivo,  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号