首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8540篇
  免费   880篇
  国内免费   119篇
  9539篇
  2023年   55篇
  2022年   113篇
  2021年   215篇
  2020年   125篇
  2019年   157篇
  2018年   169篇
  2017年   141篇
  2016年   227篇
  2015年   397篇
  2014年   418篇
  2013年   540篇
  2012年   622篇
  2011年   550篇
  2010年   334篇
  2009年   283篇
  2008年   424篇
  2007年   344篇
  2006年   361篇
  2005年   344篇
  2004年   282篇
  2003年   275篇
  2002年   265篇
  2001年   181篇
  2000年   218篇
  1999年   178篇
  1998年   101篇
  1997年   81篇
  1996年   61篇
  1995年   77篇
  1994年   89篇
  1993年   73篇
  1992年   134篇
  1991年   106篇
  1990年   118篇
  1989年   126篇
  1988年   129篇
  1987年   95篇
  1986年   101篇
  1985年   75篇
  1984年   88篇
  1983年   61篇
  1982年   53篇
  1981年   40篇
  1980年   51篇
  1979年   72篇
  1978年   59篇
  1977年   52篇
  1975年   61篇
  1974年   43篇
  1973年   47篇
排序方式: 共有9539条查询结果,搜索用时 15 毫秒
991.
992.
993.

Background

The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein during maturation. Recent reports of enhancement of DENV infectivity by anti-prM monoclonal antibodies (mAbs) suggest the presence of prM protein in dengue vaccine is potentially harmful. A better understanding of prM-E interaction and its effect on recognition of E and prM proteins by different antibodies would provide important information for future design of safe and effective subunit dengue vaccines.

Methodology/Principal Findings

In this study, we examined a series of C-terminal truncation constructs of DENV4 prME, E and prM. In the absence of E protein, prM protein expressed poorly. In the presence of E protein, the expression of prM protein increased in a dose-dependent manner. Radioimmunoprecipitation, sucrose gradient sedimentation and pulse-chase experiments revealed ET1 and EH2 were involved in prM-E interaction and EH2 in maintaining the stability of prM protein. Dot blot assay revealed E protein affected the recognition of prM protein by an anti-prM mAb; truncation of EH2 or EH1 affected the recognition of E protein by several anti-E mAbs, which was further verified by capture ELISA. The E protein ectodomain alone can be recognized well by all anti-E mAbs tested.

Conclusions/Significance

A C-terminal domain (EH2) of DENV E protein can affect the expression and stability of its chaperone prM protein. These findings not only add to our understanding of the interaction between prM and E proteins, but also suggest the ectodomain of E protein alone could be a potential subunit immunogen without inducing anti-prM response.  相似文献   
994.
Id-1 is a member of the HLH protein family that regulates a wide range of cellular processes such as cell proliferation, apoptosis, senescence and overexpression of Id-1 was recently suggested to play roles in the development and progression of different cancers. Previously, Id-1 was shown to physically interact with the viral protein E1A. Meanwhile, Id-1 expression was found to be regulated by several of the virus-encoded proteins, suggesting that Id-1 may be a common cellular target of the viral proteins. Here, we report that Id-1 interacts with the Hepatitis-B virus (HBV)-encoded protein HBX and regulates its stability in hepatocellular carcinoma (HCC) cells. We found that in HCC cells, ectopic Id-1 expression significantly decreased the half-life of the HBX protein, indicating that HBX is destabilized by Id-1. Meanwhile, the Id-1-induced HBX degradation was found to be inhibited by treatment with proteasome inhibitor, suggesting that this process is mediated through the proteasome pathway. Interestingly, while Id-1 did not induce HBX-ubiquitination, we found that removal of all the lysine residues of the HBX protein protects it from the effect of Id-1, indicating that ubiquitination is still required for the Id-1-mediated HBX degradation. Meanwhile, we found that Id-1 binds to the proteasome subunit C8 and facilitates its interaction with the HBX protein and disruption of this interaction completely abolishes the negative effect of Id-1 on HBX protein stability. Taken together, our results demonstrated a novel function of Id-1 in regulating HBX protein stability through interaction with the proteasome.  相似文献   
995.
In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated whether oncogenic tyrosine kinase activation also occurs in other categories of lymphoma by staining 145 cases of lymphoma covering those tumours with a range of different subtypes including those with morphological similarity to ALK-positive anaplastic large cell lymphoma (ALCL). Twelve cases of the borderline malignant disorder lymphomatoid papulosis were also studied. Twenty seven of the 28 cases of ALK-positive ALCL showed the extensive cytoplasmic labelling for phosphotyrosine in the neoplastic cells. The remaining case containing moesin-ALK exhibited membrane-associated phosphotyrosine expression. There was no nuclear phosphotyrosine labelling in any of the ALK-positive ALCL, even though ALK was present within the cell nuclei in 23 of the tumours. Variable degrees of phosphotyrosine labelling, usually membrane-restricted, were observed in 7/40 cases of ALK-negative ALCL, 9/29 cases of diffuse large B-cell lymphoma, 3/6 cases of mediastinal B-cell lymphoma, 2/7 cases of Hodgkin's lymphoma, 3/6 cases of peripheral T-cell lymphomas unspecified, 4/6 cases of B-cell chronic lymphocytic leukaemia, 2/6 cases of follicular lymphomas and 2/12 cases of lymphomatoid papulosis studied. However none of these phosphotyrosine-positive cases showed the strong cytoplasmic labelling comparable to that seen in ALK-positive lymphoma. We conclude that activation of a tyrosine kinase is probably not a major oncogenic event in lymphomas other than ALK-positive ALCL.  相似文献   
996.
997.
超临界CO2技术萃取蛋黄磷脂   总被引:15,自引:0,他引:15  
采用新型物理分离技术──超临界CO2萃取法,提取天然蛋黄粉中的磷脂.在40MPa,先去除蛋黄粉中甘油三酯和胆固醇,再萃取磷脂.结果显示,磷脂纯度为95%,N/P比值为1.003,λmax=214nm,薄层层析显示磷脂着色点清晰,并去除了绝大部分甘油三酯和胆固醇.此法操作简单、产品质量高、安全和不污染环境,还可得到天然纯蛋黄油和蛋白.  相似文献   
998.
Hepadnaviruses are enveloped viruses, each with a DNA genome packaged in an icosahedral nucleocapsid, which is the site of viral DNA synthesis. In the presence of envelope proteins, DNA-containing nucleocapsids are assembled into virions and secreted, but in the absence of these proteins, nucleocapsids deliver viral DNA into the cell nucleus. Presumably, this step is identical to the delivery of viral DNA during the initiation of an infection. Unfortunately, the mechanisms triggering the disintegration of subviral core particles and delivery of viral DNA into the nucleus are not yet understood. We now report the identification of a sequence motif resembling a serine- or threonine-proline kinase recognition site in the core protein at a location that is required for the assembly of core polypeptides into capsids. Using duck hepatitis B virus, we demonstrated that mutations at this sequence motif can have profound consequences for RNA packaging, DNA replication, and core protein stability. Furthermore, we found a mutant with a conditional phenotype that depended on the cell type used for virus replication. Our results support the hypothesis predicting that this motif plays a role in assembly and disassembly of viral capsids.  相似文献   
999.
探讨脑肿瘤的浸润转移机制,利用免疫组化技术对原发性脑胶质瘤间质组成进行观察。免疫组化结果显示,CollagenⅣ、Fibronection、Laminin(CollⅣ、FN、LM)三种抗原在正常脑组织及脑瘤组织的血管基底膜和其表面被覆软脑膜均有表达,以FN表达最强。CollⅣ表达稍次,LM表达最弱,在部分胶质瘤细胞外基质有FN阳性表达,胶质瘤细胞外基质FN阳性表达率与胶质瘤的分化程度无关。各型各级胶质瘤血管基底膜部分呈线状连续完整,部分呈分层网格状增厚。本研究结果显示:活体胶质瘤细胞自身合成的FN可能有助于瘤细胞的组织移行能力,在一定程度上促成了胶质瘤的浸润性生长;胶质瘤细胞与转移瘤细胞转移侵袭能力不同,为进一步探索脑瘤的转移机制,应重点分析瘤细胞表面大分子物质表达的特异性。  相似文献   
1000.
Hepatitis C virus (HCV) replication involves many viral and host factors. Here, we employed a lentivirus-based RNA interference (RNAi) screening approach to search for possible cellular factors. By using a kinase-phosphatase RNAi library and an HCV replicon reporter system, we identified a serine-threonine kinase, Polo-like kinase 1 (Plk1), as a potential host factor regulating HCV replication. Knockdown of Plk1 reduced both HCV RNA replication and nonstructural (NS) protein production in both HCV replicon cells and HCV-infected cells while it did not significantly affect host cellular growth or cell cycle. Overexpression of Plk1 in the knockdown cells rescued HCV replication. Interestingly, the ratio between the hyperphosphorylated form (p58) and the basal phosphorylated form (p56) of NS5A was lower in the Plk1 knockdown cells and Plk1 kinase inhibitor-treated cells than in the control groups. Further studies showed that Plk1 could be immunoprecipitated together with NS5A. Both proteins partially colocalized in the perinuclear region. Furthermore, Plk1 could phosphorylate NS5A to both the p58 and p56 forms in an in vitro assay system; the phosphorylation efficiency was comparable to that of the reported casein kinase. Taken together, this study shows that Plk1 is an NS5A phosphokinase and thereby indirectly regulates HCV RNA replication. Because of the differential effects of Plk1 on HCV replication and host cell growth, Plk1 could potentially serve as a target for anti-HCV therapy.Hepatitis C virus (HCV) is the major causative agent of non-A/non-B hepatitis (26). More than 170 million people, or 3% of the population in the world, are infected with HCV (29). It establishes chronic infection in at least 85% of infected individuals and is associated with liver cirrhosis and hepatocellular carcinoma. Current treatment, which combines polyethylene glycol-interferon (PEG-IFN) and ribavirin, is ineffective in 22% of patients with non-genotype 1 and in 45% of patients with genotype 1 HCV (1, 16, 23, 55). Therefore, identification of new targets for HCV therapy is an important issue, and cellular genes involved in the HCV life cycle may serve as good candidates.HCV is a positive-strand RNA virus and the only known member of Hepacivirus genus in the family Flaviviridae. Its genome has a length of about 9,600 nucleotides coding for a single polyprotein. The long polyprotein is further processed into at least 10 different products, including four structural proteins (core, E1, E2, and p7) and six nonstructural (NS) proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Nonstructural proteins NS3-NS5B are components of the membrane-associated HCV replication complex (8, 13, 36, 45). NS3 is a bifunctional protein containing an N-terminal protease domain and a C-terminal helicase/NTPase domain, and NS4A serves as a cofactor for NS3 protease. NS4B protein is known to induce intracellular membrane changes that probably serve as the site for viral RNA replication (8). NS5A is required for RNA replication, but little is known about its function. NS5B is the RNA-dependent RNA polymerase (reviewed in reference 47).NS5A is phosphorylated on multiple serine and threonine residues and exists in basal phosphorylated (p56) and hyperphosphorylated (p58) forms (49). Increasing evidence suggests that the regulation of NS5A phosphorylation is important for HCV RNA replication. Adaptive mutations or kinase inhibitors, which reduce NS5A hyperphosphorylation, increased the replication of an HCV replicon in cell culture (HCVcc) systems (2, 4, 38). However, when an adaptive replicon with reduced p58 was further treated with the same kinase inhibitor or introduced with a second adaptive mutation, RNA replication was completely blocked (32, 38). Furthermore, the mutations that reduce NS5A hyperphosphorylation and promote RNA replication in cell culture, paradoxically, prevented productive replication in the chimpanzee model (6). These results imply that the tight control of the p58/p56 ratio is important for HCV replication. The detailed mechanism is still not clear, but a clue was provided by the finding of differential association of NS5A phospho-forms with the host vesicle-associated membrane protein-associated protein A (VAP-A) protein, which is an essential molecule for HCV replicase (9, 12). On the other hand, NS5A phosphorylation was recently found to regulate the production of infectious virus (34, 50). Alanine substitutions in the C-terminal domain III of NS5A impaired NS5A phosphorylation, leading to a decrease in NS5A-core protein interaction, disturbance of subcellular localization of NS5A, and disruption of virion production (3, 34, 50). In summary, phosphorylation on NS5A is not only important for HCV RNA replication but also critical for infectious virus production.Since the phosphorylation state of NS5A is correlated with HCV RNA replication and virion production, cellular kinases responsible for NS5A phosphorylation may serve as good candidates for drug targets. Several kinases have been shown to target NS5A in vitro, including casein kinase I (CKI), CKII, MEK1, MKK6, MKK7, AKT, and p70S6K (7, 24). Among these proteins, CKI and CKII are better characterized for NS5A phosphorylation. CKIα has been identified as the target of kinase inhibitors which decrease the hyperphosphorylation of NS5A and was further confirmed as a direct kinase of NS5A (41, 42). CKI requires prephosphorylation of residues near the predicted phosphorylation site in NS5A for effective modification, suggesting that other kinases are also involved in this process (42). CKII has been shown to bind to the C-terminal domain of NS5A and phosphorylate NS5A in vitro (24). Inhibition of CKII with chemical compounds or small interfering RNA (siRNA) did not significantly affect HCV RNA replication but severely disrupted virus production (50).In this study, using lentivirus-based RNA interference (RNAi) screening, we identified a serine/threonine kinase, Polo-like kinase 1 (Plk1), which is involved in HCV replication. Expression of short hairpin RNAs (shRNAs) targeting Plk1 decreased HCV replication and virus production. Moreover, silencing of Plk1 decreased the hyperphosphorylated form of NS5A. In cells treated with a Plk1-specific kinase inhibitor, HCV replication and NS5A hyperphosphorylation were significantly reduced, indicating that Plk1 kinase activity is required for this process. Further studies showed that Plk1 was coimmunoprecipitated and partially colocalized with NS5A, suggesting NS5A as a possible substrate for Plk1. Finally, NS5A is hyperphosphorylated by Plk1 in vitro, supporting the proposition that Plk1 regulates HCV replication through hyperphosphorylation of NS5A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号