全文获取类型
收费全文 | 3707篇 |
免费 | 252篇 |
国内免费 | 5篇 |
专业分类
3964篇 |
出版年
2023年 | 13篇 |
2022年 | 24篇 |
2021年 | 54篇 |
2020年 | 21篇 |
2019年 | 47篇 |
2018年 | 50篇 |
2017年 | 56篇 |
2016年 | 87篇 |
2015年 | 127篇 |
2014年 | 150篇 |
2013年 | 255篇 |
2012年 | 245篇 |
2011年 | 268篇 |
2010年 | 130篇 |
2009年 | 135篇 |
2008年 | 263篇 |
2007年 | 238篇 |
2006年 | 250篇 |
2005年 | 256篇 |
2004年 | 254篇 |
2003年 | 219篇 |
2002年 | 190篇 |
2001年 | 32篇 |
2000年 | 20篇 |
1999年 | 41篇 |
1998年 | 53篇 |
1997年 | 36篇 |
1996年 | 38篇 |
1995年 | 35篇 |
1994年 | 41篇 |
1993年 | 35篇 |
1992年 | 24篇 |
1991年 | 19篇 |
1990年 | 22篇 |
1989年 | 28篇 |
1988年 | 12篇 |
1987年 | 14篇 |
1986年 | 14篇 |
1985年 | 31篇 |
1984年 | 23篇 |
1983年 | 19篇 |
1982年 | 16篇 |
1981年 | 10篇 |
1980年 | 10篇 |
1978年 | 11篇 |
1977年 | 5篇 |
1976年 | 9篇 |
1975年 | 5篇 |
1974年 | 6篇 |
1967年 | 3篇 |
排序方式: 共有3964条查询结果,搜索用时 15 毫秒
61.
Hidetaka Sugihara Takatsugu Ishimoto Masayuki Watanabe Hiroshi Sawayama Masaaki Iwatsuki Yoshifumi Baba Yoshihiro Komohara Motohiro Takeya Hideo Baba 《PloS one》2013,8(11)
Bmi1 is overexpressed in a variety of human cancers including gastrointestinal cancer. The high expression level of Bmi1 protein is associated with poor prognosis of gastrointestinal cancer patients. On the other hand, tumor-associated macrophages (TAMs) contribute to tumor growth, invasion, and metastasis by producing various mediators in the tumor microenvironment. The aim of this study was to investigate TAM-mediated regulation of Bmi1 expression in gastrointestinal cancer. The relationship between TAMs and Bmi1 expression was analyzed by immunohistochemistry and quantitative real-time PCR (qRT-PCR), and results showed a positive correlation with tumor-infiltrating macrophages (CD68 and CD163) and Bmi1 expression in cancer cells. Co-culture with TAMs triggered Bmi1 expression in cancer cell lines and enhanced sphere formation ability. miRNA microarray analysis of a gastric cancer cell line co-cultured with macrophages was conducted, and using in silico methods to analyze the results, we identified miR-30e* as a potential regulator of Bmi1 expression. Luciferase assays using miR-30e* mimic revealed that Bmi1 was a direct target for miR-30e* by interactions with the putative miR-30e* binding sites in the Bmi1 3′ untranslated region. qRT-PCR analysis of resected cancer specimens showed that miR-30e* expression was downregulated in tumor regions compared with non-tumor regions, and Bmi1 expression was inversely correlated with miR-30e* expression in gastric cancer tissues, but not in colon cancer tissues. Our findings suggest that TAMs may cause increased Bmi1 expression through miR-30e* suppression, leading to tumor progression. The suppression of Bmi1 expression mediated by TAMs may thus represent a possible strategy as the treatment of gastrointestinal cancer. 相似文献
62.
Ryo Yoshizawa Nobuhisa Umeki Akihiro Yamamoto Mariko Okada Masayuki Murata Yasushi Sako 《Molecular biology of the cell》2021,32(19):1838
p52SHC (SHC) and GRB2 are adaptor proteins involved in the RAS/MAPK (ERK) pathway mediating signals from cell-surface receptors to various cytoplasmic proteins. To further examine their roles in signal transduction, we studied the translocation of fluorescently labeled SHC and GRB2 to the cell surface, caused by the activation of ERBB receptors by heregulin (HRG). We simultaneously evaluated activated ERK translocation to the nucleus. Unexpectedly, the translocation dynamics of SHC were sustained when those of GRB2 were transient. The sustained localization of SHC positively correlated with the sustained nuclear localization of ERK, which became more transient after SHC knockdown. SHC-mediated PI3K activation was required to maintain the sustainability of the ERK translocation regulating MEK but not RAF. In cells overexpressing ERBB1, SHC translocation became transient, and the HRG-induced cell fate shifted from a differentiation to a proliferation bias. Our results indicate that SHC and GRB2 functions are not redundant but that SHC plays the critical role in the temporal regulation of ERK activation. 相似文献
63.
Shunsuke Matsuoka Yoriko Sugiyama Yoshito Shimono Masayuki Ushio Hideyuki Doi 《Environmental microbiology》2021,23(8):4797-4806
Investigation of seasonal variation in fungal communities is essential for understanding biodiversity and ecosystem functions. However, the conventional sampling method, with substrate removal and high spatial heterogeneity of community composition, makes surveying the seasonality of fungal communities challenging. Recently, water environmental DNA (eDNA) analysis has been explored for its utility in biodiversity surveys. In this study, we assessed whether the seasonality of fungal communities can be detected by monitoring eDNA in a forest stream. We conducted monthly water sampling in a forest stream over 2 years and used DNA metabarcoding to identify fungal eDNA. The stream water contained DNA from functionally diverse aquatic and terrestrial fungi, such as plant decomposers, parasites and mutualists. The variation in the fungal assemblage showed a regular annual periodicity, meaning that the assemblages in a given season were similar, irrespective of the year or sampling. Furthermore, the strength of the annual periodicity varied among functional groups. Our results suggest that forest streams may act as a ‘trap’ for terrestrial fungal DNA derived from different habitats, allowing the analysis of fungal DNA in stream water to provide information about the temporal variation in fungal communities in both the aquatic and the surrounding terrestrial ecosystems. 相似文献
64.
Nakano C Motegi A Sato T Onodera M Hoshino T 《Bioscience, biotechnology, and biochemistry》2007,71(10):2543-2550
Sterol biosynthesis by prokaryotic organisms is very rare. Squalene epoxidase and lanosterol synthase are prerequisite to cyclic sterol biosynthesis. These two enzymes, from the methanotrophic bacterium Methylococcus capsulatus, were functionally expressed in Escherichia coli. Structural analyses of the enzymatic products indicated that the reactions proceeded in a complete regio- and stereospecific fashion to afford (3S)-2,3-oxidosqualene from squalene and lanosterol from (3S)-2,3-oxidosqualene, in full accordance with those of eukaryotes. However, our result obtained with the putative lanosterol synthase was inconsistent with a previous report that the prokaryote accepts both (3R)- and (3S)-2,3-oxidosqualenes to afford 3-epi-lanosterol and lanosterol, respectively. This is the first report demonstrating the existence of the genes encoding squalene epoxidase and lanosterol synthase in prokaryotes by establishing the enzyme activities. The evolutionary aspect of prokaryotic squalene epoxidase and lanosterol synthase is discussed. 相似文献
65.
TGF-beta isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas 总被引:1,自引:0,他引:1
Tulachan SS Tei E Hembree M Crisera C Prasadan K Koizumi M Shah S Guo P Bottinger E Gittes GK 《Developmental biology》2007,305(2):508-521
Transforming growth factor-beta (TGF-beta) superfamily signaling has been implicated in many developmental processes, including pancreatic development. Previous studies are conflicting with regard to an exact role for TGF-beta signaling in various aspects of pancreatic organogenesis. Here we have investigated the role of TGF-beta isoform signaling in embryonic pancreas differentiation and lineage selection. The TGF-beta isoform receptors (RI, RII and ALK1) were localized mainly to both the pancreatic epithelium and mesenchyme at early stages of development, but then with increasing age localized to the pancreatic islets and ducts. To determine the specific role of TGF-beta isoforms, we functionally inactivated TGF-beta signaling at different points in the signaling cascade. Disruption of TGF-beta signaling at the receptor level using mice overexpressing the dominant-negative TGF-beta type II receptor showed an increase in endocrine precursors and proliferating endocrine cells, with an abnormal accumulation of endocrine cells around the developing ducts of mid-late stage embryonic pancreas. This pattern suggested that TGF-beta isoform signaling may suppress the origination of secondary transition endocrine cells from the ducts. Secondly, TGF-beta isoform ligand inhibition with neutralizing antibody in pancreatic organ culture also led to an increase in the number of endocrine-positive cells. Thirdly, hybrid mix-and-match in vitro recombinations of transgenic pancreatic mesenchyme and wild-type epithelium also led to increased endocrine cell differentiation, but with different patterns depending on the directionality of the epithelial-mesenchymal signaling. Together these results suggest that TGF-beta signaling is important for restraining the growth and differentiation of pancreatic epithelial cells, particularly away from the endocrine lineage. Inhibition of TGF-beta signaling in the embryonic period may thus allow pancreatic epithelial cells to progress towards the endocrine lineage unchecked, particularly as part of the secondary transition of pancreatic endocrine cell development. TGF-beta RII in the ducts and islets may normally serve to downregulate the production of beta cells from embryonic ducts. 相似文献
66.
Yamada H Tamada T Kosaka M Miyata K Fujiki S Tano M Moriya M Yamanishi M Honjo E Tada H Ino T Yamaguchi H Futami J Seno M Nomoto T Hirata T Yoshimura M Kuroki R 《Protein science : a publication of the Protein Society》2007,16(7):1389-1397
A protein crystal lattice consists of surface contact regions, where the interactions of specific groups play a key role in stabilizing the regular arrangement of the protein molecules. In an attempt to control protein incorporation in a crystal lattice, a leucine zipper-like hydrophobic interface (comprising four leucine residues) was introduced into a helical region (helix 2) of the human pancreatic ribonuclease 1 (RNase 1) that was predicted to form a suitable crystallization interface. Although crystallization of wild-type RNase 1 has not yet been reported, the RNase 1 mutant having four leucines (4L-RNase 1) was successfully crystallized under several different conditions. The crystal structures were subsequently determined by X-ray crystallography by molecular replacement using the structure of bovine RNase A. The overall structure of 4L-RNase 1 is quite similar to that of the bovine RNase A, and the introduced leucine residues formed the designed crystal interface. To characterize the role of the introduced leucine residues in crystallization of RNase 1 further, the number of leucines was reduced to three or two (3L- and 2L-RNase 1, respectively). Both mutants crystallized and a similar hydrophobic interface as in 4L-RNase 1 was observed. A related approach to engineer crystal contacts at helix 3 of RNase 1 (N4L-RNase 1) was also evaluated. N4L-RNase 1 also successfully crystallized and formed the expected hydrophobic packing interface. These results suggest that appropriate introduction of a leucine zipper-like hydrophobic interface can promote intermolecular symmetry for more efficient protein crystallization in crystal lattice engineering efforts. 相似文献
67.
Nishino R Ikeda K Hayakawa T Takahashi T Suzuki T Sato M 《Bioorganic & medicinal chemistry》2011,19(7):2418-2427
Eleven novel sialidase inhibitors 9 and 10 with an N-sulfonylamidino group at the C-4 position of Neu5Ac2en 1 against human parainfluenza virus type 1 (hPIV-1) were synthesized using copper-catalyzed three-component coupling reactions, and their inhibitory activities against hPIV-1 sialidase were studied. 相似文献
68.
69.
O6-Methylguanine, one of alkylated DNA bases, is especially mutagenic. Cells containing this lesion are eliminated by induction of apoptosis, associated with the function of mismatch repair (MMR) proteins. A retrovirus-mediated gene-trap mutagenesis was used to isolate new genes related to the induction of apoptosis, triggered by the treatment with an alkylating agent, N-methyl-N-nitrosourea (MNU). This report describes the identification of a novel gene, MAPO2 (O6-methylguanine-induced apoptosis 2), which is originally annotated as C1orf201. The MAPO2 gene is conserved among a wide variety of multicellular organisms and encodes a protein containing characteristic PxPxxY repeats. To elucidate the function of the gene product in the apoptosis pathway, a human cell line derived from HeLa MR cells, in which the MAPO2 gene was stably knocked down by expressing specific miRNA, was constructed. The knockdown cells grew at the same rate as HeLa MR, thus indicating that MAPO2 played no role in the cellular growth. After exposure to MNU, HeLa MR cells and the knockdown cells underwent cell cycle arrest at G2/M phase, however, the production of the sub-G1 population in the knockdown cells was significantly suppressed in comparison to that in HeLa MR cells. Moreover, the activation of BAK and caspase-3, and depolarization of mitochondrial membrane, hallmarks for the induction of apoptosis, were also suppressed in the knockdown cells. These results suggest that the MAPO2 gene product might positively contribute to the induction of apoptosis triggered by O6-methylguanine. 相似文献
70.
Masayuki Ikeda Shigeru Suzuki Masahiro Kishio Moritoshi Hirono Takashi Sugiyama Junko Matsuura Teppei Suzuki Takayuki Sota Charles N. Allen Shiro Konishi Tohru Yoshioka 《Biophysical journal》2004,86(1):565-575
Abundant evidences demonstrate that deuterium oxide (D2O) modulates various secretory activities, but specific mechanisms remain unclear. Using AtT20 cells, we examined effects of D2O on physiological processes underlying β-endorphin release. Immunofluorescent confocal microscopy demonstrated that 90% D2O buffer increased the amount of actin filament in cell somas and decreased it in cell processes, whereas β-tubulin was not affected. Ca2+ imaging demonstrated that high-K+-induced Ca2+ influx was not affected during D2O treatment, but was completely inhibited upon D2O washout. The H2O/D2O replacement in internal solutions of patch electrodes reduced Ca2+ currents evoked by depolarizing voltage steps, whereas additional extracellular H2O/D2O replacement recovered the currents, suggesting that D2O gradient across plasma membrane is critical for Ca2+ channel kinetics. Radioimmunoassay of high-K+-induced β-endorphin release demonstrated an increase during D2O treatment and a decrease upon D2O washout. These results demonstrate that the H2O-to-D2O-induced increase in β-endorphin release corresponded with the redistribution of actin, and the D2O-to-H2O-induced decrease in β-endorphin release corresponded with the inhibition of voltage-sensitive Ca2+ channels. The computer modeling suggests that the differences in the zero-point vibrational energy between protonated and deuterated amino acids produce an asymmetric distribution of these amino acids upon D2O washout and this causes the dysfunction of Ca2+ channels. 相似文献