首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3812篇
  免费   268篇
  国内免费   5篇
  2023年   10篇
  2022年   26篇
  2021年   54篇
  2020年   23篇
  2019年   50篇
  2018年   52篇
  2017年   59篇
  2016年   97篇
  2015年   128篇
  2014年   153篇
  2013年   255篇
  2012年   252篇
  2011年   278篇
  2010年   134篇
  2009年   143篇
  2008年   274篇
  2007年   249篇
  2006年   252篇
  2005年   268篇
  2004年   258篇
  2003年   223篇
  2002年   200篇
  2001年   37篇
  2000年   23篇
  1999年   44篇
  1998年   53篇
  1997年   39篇
  1996年   38篇
  1995年   36篇
  1994年   42篇
  1993年   35篇
  1992年   22篇
  1991年   17篇
  1990年   22篇
  1989年   29篇
  1988年   12篇
  1987年   14篇
  1986年   14篇
  1985年   31篇
  1984年   25篇
  1983年   20篇
  1982年   16篇
  1981年   11篇
  1980年   10篇
  1978年   11篇
  1977年   5篇
  1976年   9篇
  1975年   4篇
  1974年   6篇
  1967年   3篇
排序方式: 共有4085条查询结果,搜索用时 15 毫秒
991.
Embryonic carcinoma (EC) cells, which are malignant stem cells of teratocarcinoma, have numerous morphological and biochemical properties in common with pluripotent stem cells such as embryonic stem (ES) cells. However, three EC cell lines (F9, P19 and PCC3) show different developmental potential and self‐renewal capacity from those of ES cells. All three EC cell lines maintain self‐renewal capacity in serum containing medium without Leukemia Inhibitory factor (LIF) or feeder layer, and show limited differentiation capacity into restricted lineage and cell types. To reveal the underlying mechanism of these characteristics, we took the approach of characterizing extrinsic factors derived from EC cells on the self‐renewal capacity and pluripotency of mouse ES cells. Here we demonstrate that EC cell lines F9 and P19 produce factor(s) maintaining the undifferentiated state of mouse ES cells via an unidentified signal pathway, while P19 and PCC3 cells produce self‐renewal factors of ES cells other than LIF that were able to activate the STAT3 signal; however, inhibition of STAT3 activation with Janus kinase inhibitor shows only partial impairment on the maintenance of the undifferentiated state of ES cells. Thus, these factors present in EC cells‐derived conditioned medium may be responsible for the self‐renewal capacity of EC and ES cells independently of LIF signaling.  相似文献   
992.
Glypican 3 (GPC3), a GPI-anchored heparan sulfate proteoglycan, is expressed in the majority of hepatocellular carcinoma (HCC) tissues. Using MRL/lpr mice, we successfully generated a series of anti-GPC3 monoclonal antibodies (mAbs). GPC3 was partially cleaved between Arg358 and Ser359, generating a C-terminal 30-kDa fragment and an N-terminal 40-kDa fragment. All mAbs that induced antibody-dependent cellular cytotoxicity (ADCC) and/or complement-dependent cytotoxicity (CDC) against cells expressing GPC3 recognized the 30-kDa fragment, indicating that the C-terminal region of GPC3 serves as an epitope for mAb with ADCC and/or CDC inducing activities. Chimeric mAbs with Fc replaced by human IgG1 were created from GC33, one of the mAbs that reacted with the C-terminal 30-kDa fragment. Chimeric GC33 induced not only ADCC against GPC3-positive human HCC cells but also was efficacious against the Huh-7 human HCC xenograft. Thus, mAbs against the C-terminal 30-kDa fragment such as GC33 are useful in therapy targeting HCC.  相似文献   
993.
We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5′-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3′-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.  相似文献   
994.
To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of VH-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to Sμ as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since Sμ sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).  相似文献   
995.
996.
997.
Cell‐based angiogenesis is a promising method for the treatment of ischemic diseases, but the poor retention of implanted cells in targeted tissues is a major drawback. We tested whether hypoxic preconditioning increased retention and angiogenic potency of implanted cells in ischemic tissue. Hypoxic preconditioning of mouse peripheral blood mononuclear cells (PBMNCs) was done with 24 h of culture under 2% O2. Normoxia‐cultured PBMNCs were used as a control. Hypoxic preconditioning increased the adhesion capacity of the PBMNCs. Moreover, the expression of integrin αM and CXCR4 was significantly higher in the hypoxia‐preconditioned PBMNCs than in the normoxia‐cultured PBMNCs. Interestingly, the expression of intercellular adhesion molecule‐1 (ICAM‐1), a ligand of integrin αM, and stromal cell‐derived factor‐1 (SDF‐1), a chemokine for CXCR4, were remarkably increased in the ischemic hindlimbs. The retention of the hypoxia‐preconditioned PBMNCs was significantly higher than that of the normoxia‐cultured PBMNCs, 3 days after their intramuscular implantation into ischemic hindlimbs. We also noted better blood flow in the ischemic hindlimbs implanted with the hypoxia‐preconditioned PBMNCs than in those implanted with the normoxia‐cultured PBMNCs, 14 days after treatment. Furthermore, antibody neutralization of integrin αM and CXCR4 abolished completely the increased cell retention and angiogenic potency of the hypoxia‐preconditioned PBMNCs after implantation into the ischemic hindlimbs. These results indicate that hypoxic preconditioning of implanted cells is a feasible method of enhancing therapeutic angiogenesis by increasing their retention. J. Cell. Physiol. 220: 508–514, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
998.
Apolipoproteins (apo) E and C-I are components of triglyceride (TG)-rich lipoproteins and impact their metabolism. Functional polymorphisms have been established in apoE but not in apoC-I. We studied the relationship between apoE and apoC-I gene polymorphisms and plasma lipoproteins and coronary artery disease (CAD) in 211 African Americans and 306 Caucasians. In African Americans but not in Caucasians, apoC-I H2-carriers had significantly lower total and LDL cholesterol and apoB levels, and higher glucose, insulin, and HOMA-IR levels compared with H1 homozygotes. Differences across CAD phenotypes were seen for the apoC-I polymorphism. African-American H2-carriers without CAD had significantly lower total cholesterol (P < 0.001), LDL cholesterol (P < 0.001), and apoB (P < 0.001) levels compared with H1 homozygotes, whereas no differences were found across apoC-I genotypes for African Americans with CAD. Among African-American apoC-I H1 homozygotes, subjects with CAD had a profile similar to the metabolic syndrome (i.e., higher triglyceride, glucose, and insulin) compared with subjects without CAD. For African-American H2-carriers, subjects with CAD had a pro-atherogenic lipid pattern (i.e., higher LDL cholesterol and apoB levels), compared with subjects without CAD. ApoC-I genotypes showed an ethnically distinct phenotype relationship with regard to CAD and CAD risk factors.  相似文献   
999.
By examining the area of the Sarobetsu Mire in northern Japan using ALOS/PALSAR data, we have clarified the backscattering behavior and characteristics of the L-band microwaves when used in the study of peatlands. We classified the vegetation into six categories and noted the differences in scattering intensity and incident-angle dependencies among these. The scattering intensity for HH and HV polarizations was greatest with sasa (dwarf bamboo) and reeds, and least with sphagnum. The incident-angle dependency with the HH polarization was higher for sasa and reed than for other vegetation types. Analysis of the polarization revealed that such differences among vegetation classes were reflected most clearly in the volume scattering characteristic. Applying simple and multiple regression analysis for the environmental factors of soil, hydrology, vegetation, and roughness against the backscatter coefficient, we also found stronger interrelations with soil factors such as bulk density, nitrogen and carbon content, and C/N ratio, and against the backscatter coefficient, than with either the roughness or vegetation. Based on such results, we clarified the unique scattering characteristics of peatlands in which scattering from the surface soil is more marked than that from other elements. We consequently estimated the spatial distribution of surface soil characteristics in peatland using the combined data available from L-band satellite SAR, aircraft laser (airborne LiDAR), and optical sensors.  相似文献   
1000.

Background

The sleep sequence: i) non-REM sleep, ii) REM sleep, and iii) wakefulness, is stable and widely preserved in mammals, but the underlying mechanisms are unknown. It has been shown that this sequence is disrupted by sudden REM sleep onset during active wakefulness (i.e., narcolepsy) in orexin-deficient mutant animals. Phospholipase C (PLC) mediates the signaling of numerous metabotropic receptors, including orexin receptors. Among the several PLC subtypes, the β4 subtype is uniquely localized in the geniculate nucleus of thalamus which is hypothesized to have a critical role in the transition and maintenance of sleep stages. In fact, we have reported irregular theta wave frequency during REM sleep in PLC-β4-deficient mutant (PLC-β4−/−) mice. Daily behavioral phenotypes and metabotropic receptors involved have not been analyzed in detail in PLC-β4−/− mice, however.

Methodology/Principal Findings

Therefore, we analyzed 24-h sleep electroencephalogram in PLC-β4−/− mice. PLC-β4−/− mice exhibited normal non-REM sleep both during the day and nighttime. PLC-β4−/− mice, however, exhibited increased REM sleep during the night, their active period. Also, their sleep was fragmented with unusual wake-to-REM sleep transitions, both during the day and nighttime. In addition, PLC-β4−/− mice reduced ultradian body temperature rhythms and elevated body temperatures during the daytime, but had normal homeothermal response to acute shifts in ambient temperatures (22°C–4°C). Within the most likely brain areas to produce these behavioral phenotypes, we found that, not orexin, but group-1 metabotropic glutamate receptor (mGluR)-mediated Ca2+ mobilization was significantly reduced in the dorsal lateral geniculate nucleus (LGNd) of PLC-β4−/− mice. Voltage clamp recordings revealed that group-1 mGluR-mediated currents in LGNd relay neurons (inward in wild-type mice) were outward in PLC-β4−/− mice.

Conclusions/Significance

These lines of evidence indicate that impaired LGNd relay, possibly mediated via group-1 mGluR, may underlie irregular sleep sequences and ultradian body temperature rhythms in PLC-β4−/− mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号