首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3739篇
  免费   254篇
  国内免费   5篇
  3998篇
  2023年   13篇
  2022年   23篇
  2021年   55篇
  2020年   21篇
  2019年   49篇
  2018年   51篇
  2017年   56篇
  2016年   87篇
  2015年   127篇
  2014年   153篇
  2013年   258篇
  2012年   243篇
  2011年   273篇
  2010年   130篇
  2009年   136篇
  2008年   266篇
  2007年   235篇
  2006年   251篇
  2005年   258篇
  2004年   259篇
  2003年   220篇
  2002年   192篇
  2001年   33篇
  2000年   22篇
  1999年   42篇
  1998年   53篇
  1997年   37篇
  1996年   39篇
  1995年   35篇
  1994年   42篇
  1993年   35篇
  1992年   23篇
  1991年   18篇
  1990年   22篇
  1989年   29篇
  1988年   12篇
  1987年   15篇
  1986年   15篇
  1985年   33篇
  1984年   23篇
  1983年   17篇
  1982年   16篇
  1981年   10篇
  1980年   10篇
  1978年   12篇
  1977年   5篇
  1976年   9篇
  1975年   4篇
  1974年   6篇
  1973年   5篇
排序方式: 共有3998条查询结果,搜索用时 15 毫秒
91.
Eleven novel sialidase inhibitors 9 and 10 with an N-sulfonylamidino group at the C-4 position of Neu5Ac2en 1 against human parainfluenza virus type 1 (hPIV-1) were synthesized using copper-catalyzed three-component coupling reactions, and their inhibitory activities against hPIV-1 sialidase were studied.  相似文献   
92.
93.
94.
To identify erythroid-specific heme-regulated genes, we performed differential expression analysis between wild-type and heme-deficient erythroblasts, which had been prepared from wild-type and erythroid-specific delta-aminolevulinate synthase-null mouse ES cells, respectively. Among 8737 clones on cDNA array, 40 cDNA clones, including 34 unknown ESTs, were first selected by their high expression profiles in wild-type erythroblasts, and evaluated further for their erythroid-lineage specificity, expression in hematopoietic tissues in vivo, and heme-dependent expression, which yielded 11, 4, and 4 genes, respectively. Because of the selection strategy employed, the final 4 were considered as the newly identified erythroid-specific heme-regulated genes. These 4 genes were uncoupling protein 2, nucleolar spindle-associated protein, cellular nucleic acid-binding protein, and a novel acetyltransferase-like protein. These findings thus suggest that heme may regulate a wide variety of hitherto unrecognized genes, and further analysis of these genes may clarify their role in erythroid cell differentiation.  相似文献   
95.
O6-Methylguanine, one of alkylated DNA bases, is especially mutagenic. Cells containing this lesion are eliminated by induction of apoptosis, associated with the function of mismatch repair (MMR) proteins. A retrovirus-mediated gene-trap mutagenesis was used to isolate new genes related to the induction of apoptosis, triggered by the treatment with an alkylating agent, N-methyl-N-nitrosourea (MNU). This report describes the identification of a novel gene, MAPO2 (O6-methylguanine-induced apoptosis 2), which is originally annotated as C1orf201. The MAPO2 gene is conserved among a wide variety of multicellular organisms and encodes a protein containing characteristic PxPxxY repeats. To elucidate the function of the gene product in the apoptosis pathway, a human cell line derived from HeLa MR cells, in which the MAPO2 gene was stably knocked down by expressing specific miRNA, was constructed. The knockdown cells grew at the same rate as HeLa MR, thus indicating that MAPO2 played no role in the cellular growth. After exposure to MNU, HeLa MR cells and the knockdown cells underwent cell cycle arrest at G2/M phase, however, the production of the sub-G1 population in the knockdown cells was significantly suppressed in comparison to that in HeLa MR cells. Moreover, the activation of BAK and caspase-3, and depolarization of mitochondrial membrane, hallmarks for the induction of apoptosis, were also suppressed in the knockdown cells. These results suggest that the MAPO2 gene product might positively contribute to the induction of apoptosis triggered by O6-methylguanine.  相似文献   
96.
Abundant evidences demonstrate that deuterium oxide (D2O) modulates various secretory activities, but specific mechanisms remain unclear. Using AtT20 cells, we examined effects of D2O on physiological processes underlying β-endorphin release. Immunofluorescent confocal microscopy demonstrated that 90% D2O buffer increased the amount of actin filament in cell somas and decreased it in cell processes, whereas β-tubulin was not affected. Ca2+ imaging demonstrated that high-K+-induced Ca2+ influx was not affected during D2O treatment, but was completely inhibited upon D2O washout. The H2O/D2O replacement in internal solutions of patch electrodes reduced Ca2+ currents evoked by depolarizing voltage steps, whereas additional extracellular H2O/D2O replacement recovered the currents, suggesting that D2O gradient across plasma membrane is critical for Ca2+ channel kinetics. Radioimmunoassay of high-K+-induced β-endorphin release demonstrated an increase during D2O treatment and a decrease upon D2O washout. These results demonstrate that the H2O-to-D2O-induced increase in β-endorphin release corresponded with the redistribution of actin, and the D2O-to-H2O-induced decrease in β-endorphin release corresponded with the inhibition of voltage-sensitive Ca2+ channels. The computer modeling suggests that the differences in the zero-point vibrational energy between protonated and deuterated amino acids produce an asymmetric distribution of these amino acids upon D2O washout and this causes the dysfunction of Ca2+ channels.  相似文献   
97.
S-adenosyl-l-homocysteine hydrolase from a malaria parasite Plasmodium falciparum (PfSAHH) has been crystallized by the vapor diffusion method. The crystals belong to an orthorhombic space group P212121 with the cell dimensions of a = 76.66 A, b = 86.31 A, and c = 335.6 A. There are four subunits (one tetramer) per asymmetric unit. X-ray diffraction data have been collected up to 2.8 A resolution. Self-rotation function studies suggest that the tetrameric PfSAHH molecule has the 222 point group symmetry.  相似文献   
98.
To elucidate the intrinsic mechanisms of neurotoxicity induction, including those underlying neural cell death and neurodegeneration, we developed a gain-of-function screen for gene products causing neural cell loss. To identify novel genes with a cell-death-related function in neurons, we screened 4,964 Drosophila GS lines, in which one or two genes from much of the Drosophila genome can be overexpressed. Approximately 0.68% of the GS lines produced phenotypes involving a loss of postmitotic neurons. Of these, we identified and characterized the endd2 gene, which encodes the Drosophila ortholog of Sec61alpha (DSec61alpha), an endoplasmic reticulum protein with protein translocation activity. Ectopic expression of DSec61alpha caused neural cell death accompanied by the accumulation of ubiquitinated proteins, which was mediated by DSec61alpha's translocon activity. This supported our previous observation that the DSec61alpha translocon contributes to expanded polyglutamine-mediated neuronal toxicity, which is also associated with ubiquitinated protein accumulation. These data suggest that the translocon may be a novel component of neural cell death and degeneration pathways. Our approach can be used to identify potential neurotoxic factors within the whole genome, which will increase our understanding of the molecular mechanisms of various types of cell death, including those associated with human neurodegenerative diseases.  相似文献   
99.
100.
The cAMP receptor protein SYCRP1 in cyanobacterium Synechocystis sp. PCC 6803 is a regulatory protein that binds to the consensus DNA sequence (5'-AAATGTGATCTAGATCACATTT-3') for the cAMP receptor protein CRP in Escherichia coli. Here we examined the effects of systematic single base-pair substitutions at positions 4-8 (TGTGA) of the consensus sequence on the specific binding of SYCRP1. The consensus sequence exhibited the highest affinity, and the effects of base-pair substitutions at positions 5 and 7 were the most deleterious. The result is similar to that previously reported for CRP, whereas there were differences between SYCRP1 and CRP in the rank order of affinity for each substitution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号