首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5065篇
  免费   362篇
  国内免费   5篇
  2023年   13篇
  2022年   23篇
  2021年   65篇
  2020年   27篇
  2019年   58篇
  2018年   63篇
  2017年   69篇
  2016年   107篇
  2015年   161篇
  2014年   177篇
  2013年   324篇
  2012年   329篇
  2011年   346篇
  2010年   166篇
  2009年   181篇
  2008年   335篇
  2007年   301篇
  2006年   317篇
  2005年   308篇
  2004年   318篇
  2003年   284篇
  2002年   263篇
  2001年   91篇
  2000年   67篇
  1999年   93篇
  1998年   70篇
  1997年   53篇
  1996年   50篇
  1995年   58篇
  1994年   54篇
  1993年   49篇
  1992年   55篇
  1991年   42篇
  1990年   58篇
  1989年   53篇
  1988年   48篇
  1987年   38篇
  1986年   31篇
  1985年   56篇
  1984年   38篇
  1983年   27篇
  1982年   25篇
  1981年   13篇
  1980年   18篇
  1979年   14篇
  1978年   17篇
  1977年   10篇
  1976年   11篇
  1973年   11篇
  1972年   9篇
排序方式: 共有5432条查询结果,搜索用时 515 毫秒
101.
K Furukawa  Y Mochizuki  N Sawada 《In vitro》1984,20(7):573-584
Alterations in peroxisomes and catalase activity and their responsiveness to clofibrate in adult rat hepatocytes in primary culture were investigated. The numbers of peroxisomes with and without crystalloid nucleotids per unit cytoplasmic area were preserved in cultured hepatocytes for 2 d after seeding at a level comparable to that of freshly isolated hepatocytes. At Day 3 in culture, the number of anucleoid peroxisomes was reduced in untreated hepatocytes, accompanied by more significant reduction in the number of nucleoid-containing peroxisomes, which decreased until Day 5. Peroxisome diameters were reduced in untreated hepatocytes at Day 2 and this decrease in the diameter was continued until Day 7. Catalase activity in untreated hepatocytes decreased markedly with culture age. The number of anucleoid peroxisomes was significantly greater in hepatocytes treated with 2 mM clofibrate in culture than in freshly isolated hepatocytes for 2 d or in untreated hepatocytes of the same culture age through 7 d. The number of nucleoid-containing peroxisomes in the treated cells began to decrease in 3 d, but was greater than that of untreated cells at Days 3 and 5. Peroxisomes with well-developed nucleoids were observed frequently in the treated cells even at Day 7. Peroxisome diameters were greater in the treated cells than in untreated cells at Days 3, 5, and 7. Catalase activity was always higher in the treated cells than in untreated cells. These results suggest that clofibrate is effective in inducing peroxisome proliferation as well as in maintaining the organelles in cultured hepatocytes.  相似文献   
102.
In whole filaments of Anabaena cylindrica dark nitrogen-fixingactivity (measured as acetylene reduction) and respiration increasedwith the light intensity of a fixed period of preillumination,saturating at ca. 10,000 lux. With saturating light during preillumination,the amount and duration of dark nitrogen-fixing activity increasedwith length of preillumination, but respiration declined rapidlyin the dark. At dark respiration rates below 250 nmol O2 uptake mg protein–1?h–1(State 1) no significant nitrogen-fixing activity is observed.From 250 to 550 nmol O2 uptake?mg protein–1?h–1(State 2), nitrogen-fixing activity depends on O2 uptake whileabove 550 nmol O2 uptake?mg protein–1?h–1 (State3), nitrogen-fixing activity no longer increases with furtherincrease in O2 uptake rate. (Received June 18, 1983; Accepted November 10, 1983)  相似文献   
103.
104.
Pharbitis nil, strain Violet which had been exposed to high-intensitylight (18,000 lux at 23?C) for 7 days followed by a low-temperaturetreatment (13–14?C) for 7 days initiated flower buds evenunder continuous light, but plants given these treatments inreverse order failed to bud. Three days of high-intensity lightat 23?C was most effective in promoting the flower-inducingeffect of the subsequent low-temperature period. Six days oflow temperature following the 3-day high-intensity light periodinduced near-maximum flowering response. DCMU (5?10–6M) given during the high-intensity light period inhibited flowering,but when given during or after the low-temperature period itwas ineffective. DCMU at the same concentration given before,during or after an inductive 16-hr dark period at 26?C did notinhibit flowering. Sucrose, ATP, NADPH and some other reducingagents tested did not nullify the DCMU effect nor substitutefor the effect of high-intensity light. But, the high-intensitylight effect could be substituted, at least partly, by 5-chlorosalicylicacid, 3,4-dichlorobenzoic acid and some other benzoic acid derivatives,which are highly effective in inducing long-day flowering inthe short-day plant, Lemna paucicostata. (Received October 20, 1981; Accepted February 3, 1982)  相似文献   
105.
The cell surface of Escherichia coli K-12, reconstituted from the OmpC protein, lipopolysaccharide, and the peptidoglycan layer, was active as a receptor for phage T4, resulting in the contraction of the tail sheath and the penetration of the core through the cell surface (Furukawa et al., J. Bacteriol. 140:1071--1080, 1979). In the present work the process of DNA ejection from the contracted T4 phage particle was studied. Contracted phage particles were adsorbed to phospholipid liposomes by the core tip. This adsorption resulted in ejection of phage DNA. Either phosphatidylglycerol or cardiolipin was active for the DNA ejection. A proton motive force across the liposome membrane was not required for these processes. The process of DNA ejection, however, was temperature dependent, whereas the adsorption of the core tip to liposomes took place at 4 degrees C. Based on these observations together with those in the previous paper, the process of T4 infection of E. coli K-12 cells is discussed with special reference to the roles of cell surface components.  相似文献   
106.
The oxidation-reduction potentials of the various prosthetic groups in the native and desulfo forms of chicken liver xanthine dehydrogenase, determined by potentiometric titration in 0.05 m potassium phosphate buffer, pH 7.8, are: Mo(VI)/Mo(V) (native), ?357 mV; Mo(VI)/Mo(V) (desulfo), ?397 mV; Mo(V)/Mo(IV) (native), ?337 mV; Mo(V)/Mo(IV) (desulfo), ?433 mV; FAD/FADH · ?345 mV; FADH · FADH2, ? 377 mV; (Fe/S)Iox/(Fe/S)Ired, ?280 mV; (Fe/S)IIox/(Fe/S)IIred, ? 275 mV. Titration at pH 6.8 revealed that the Mo and FAD centers but not the Fe/S centers are in prototropic equilibrium. Spectroscopic studies on the native and deflavinated enzymes show that environment of the flavin in xanthine dehydrogenase differs from that in bovine milk xanthine oxidase.  相似文献   
107.
Both nitrogen fixation and acetylene reduction by intact cellsof Anabaena cylindrica were inhibited by oxygen, but nitrogenfixation was invariably less sensitive than acetylene reduction.The C2H2/N2 ratio ranged from 6 to 8 in the absence of oxygen,and it decreased with increase in partial pressure of oxygento 2 at a pO2 of 0.3 atm. (Received June 5, 1979; )  相似文献   
108.
109.
110.
Lipopolysaccharide isolated from Escherichia coli K-12 did not inactivate phage T4, although the cell envelopes with 1% sodium deoxycholate resulted in the release of cytoplasmic membrane proteins, 70% of the lipopolysaccharide, and almost all of the phospholipid. The reconstitution of phage receptor activity was achieved from deoxycholate-soluble and -insoluble fractions by dialysis against a solution of magnesium chloride. Lipopolysaccharide was the only essential component in the deoxycholate-soluble fraction. PhageT4-resistant mutants YA21-6 and YA21-82, having defects in the deoxycholate-soluble and -insoluble fractions, respectively, were isolated. The deoxycholate-soluble fraction of YA21-6 possessed heptoseless lipopolysaccharide, and this defect was responsible for the phage resistance. The deoxycholate-insoluble fraction of YA21-82 lacked outer membrane protein O-8. The addition of O-8 to this fraction together with the wild-type lipopolysaccharide resulted in the appearance of the receptor activity. Furthermore, the reconstitution was successfully achieved with only O-8 and the wild-type lipopolysaccharide, indicating that O-8 was an essential component in the deoxycholate-insoluble fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号