首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3744篇
  免费   264篇
  国内免费   5篇
  2023年   10篇
  2022年   15篇
  2021年   54篇
  2020年   21篇
  2019年   47篇
  2018年   51篇
  2017年   56篇
  2016年   87篇
  2015年   128篇
  2014年   152篇
  2013年   254篇
  2012年   244篇
  2011年   270篇
  2010年   131篇
  2009年   140篇
  2008年   262篇
  2007年   239篇
  2006年   253篇
  2005年   264篇
  2004年   262篇
  2003年   221篇
  2002年   193篇
  2001年   32篇
  2000年   22篇
  1999年   47篇
  1998年   54篇
  1997年   37篇
  1996年   38篇
  1995年   35篇
  1994年   41篇
  1993年   35篇
  1992年   23篇
  1991年   21篇
  1990年   23篇
  1989年   34篇
  1988年   16篇
  1987年   16篇
  1986年   15篇
  1985年   32篇
  1984年   24篇
  1983年   17篇
  1982年   17篇
  1981年   12篇
  1980年   10篇
  1978年   11篇
  1977年   5篇
  1976年   9篇
  1975年   4篇
  1974年   6篇
  1967年   3篇
排序方式: 共有4013条查询结果,搜索用时 31 毫秒
991.
Zeta-associated protein, 70 kDa (ZAP-70), a spleen tyrosine kinase (Syk) family kinase, is normally expressed on T cells and natural killer cells and plays a crucial role in activation of the T cell immunoresponse. Thus, selective ZAP-70 inhibitors might be useful not only for treating autoimmune diseases, but also for suppressing organ transplant rejection. In our recent study on the synthesis of Syk family kinase inhibitors, we discovered that novel imidazo[1,2-c]pyrimidine-8-carboxamide derivatives possessed potent ZAP-70 inhibitory activity with good selectivity for ZAP-70 over other kinases. In particular, compound 26 showed excellent ZAP-70 kinase inhibition and high selectivity for ZAP-70 over structurally related Syk. The discovery of a potent, highly selective ZAP-70 inhibitor would contribute a new therapeutic tool for autoimmune diseases and organ transplant medication.  相似文献   
992.
993.
In this study, secreted Corynebacterium glutamicum proteins were investigated by two-dimensional gel electrophoresis. Around 100 spots observed in the pH range 4.5–5.5 had molecular masses that varied from 10 to 50 kDa. Upon N-terminal amino acid sequence analysis by Edman degradation, two of them were hits to two hypothetical proteins encoded by cgR_1176 and cgR_2070 on C. glutamicum R genome, respectively. Active-form α-amylase derived from Geobacillus stearothermophilus was successfully secreted by using the predicted cgR_1176 and cgR_2070 signal sequences, indicating that these hypothetical proteins were secreted proteins. Analysis using a disruption mutant of the twin-arginine translocation (Tat) export pathway machinery of C. glutamicum suggested that one is Tat pathway dependent secretion while the other is independent of the pathway. Our results demonstrate that C. glutamicum can secrete exoproteins by using its own signal sequences, indicating its potential as a host for protein productions.  相似文献   
994.
The intracellular accumulation of unfolded or misfolded proteins is believed to contribute to aging and age-related neurodegenerative diseases. However, the links between age-dependent proteotoxicity and cellular protein degradation systems remain poorly understood. Here, we show that 26S proteasome activity and abundance attenuate with age, which is associated with the impaired assembly of the 26S proteasome with the 19S regulatory particle (RP) and the 20S proteasome. In a genetic gain-of-function screen, we characterized Rpn11, which encodes a subunit of the 19S RP, as a suppressor of expanded polyglutamine-induced progressive neurodegeneration. Rpn11 overexpression suppressed the age-related reduction of the 26S proteasome activity, resulting in the extension of flies'' life spans with suppression of the age-dependent accumulation of ubiquitinated proteins. On the other hand, the loss of function of Rpn11 caused an early onset of reduced 26S proteasome activity and a premature age-dependent accumulation of ubiquitinated proteins. It also caused a shorter life span and an enhanced neurodegenerative phenotype. Our results suggest that maintaining the 26S proteasome with age could extend the life span and suppress the age-related progression of neurodegenerative diseases.Ubiquitin-conjugated, misfolded protein aggregates are observed in the brain during normal aging and in late-onset human neurodegenerative diseases, such as Alzheimer''s, Parkinson''s, and polyglutamine diseases (e.g., Huntington''s disease or spinocerebellar ataxias) (9). Many of the mutations that cause dominantly inherited neurodegenerative diseases dramatically increase the amount of protein aggregates in vitro and in vivo, supporting the widely accepted hypothesis that proteotoxicity caused by the aggregates underlies the pathogenesis of many neurodegenerative diseases (32). Proteotoxicity can have many effects, including disruption of microtubule-dependent axonal transport (10), perturbation of membrane permeability (23), and impaired function of the ubiquitin-proteasome system (UPS) (1, 17). Aggregation-mediated toxicity has also been suggested in normal aging, because recent reports show that the impairment of autophagy in the central nervous system causes accumulation of ubiquitinated proteins and leads to neurodegenerative diseases (12, 21). These observations suggest that the continuous clearance of misfolded proteins through cellular degradation systems, including the UPS and autophagy, is important for preventing aggregation-mediated proteotoxicity both in age-related neurodegenerative diseases and in normal aging.Clinical symptoms of neurodegenerative diseases generally do not appear or progress until advanced ages, not only in sporadic forms but also in inherited forms of neurodegenerative diseases (26). These observations suggest that aggregation-mediated toxicity appears in a late-onset manner both in normal aging and in neurodegenerative diseases. Furthermore, a link between the aging process and aggregation-mediated proteotoxicity has been suggested by evidence that Huntington''s disease-associated proteotoxicity was ameliorated when the aging process slowed, that is, the life span extension via decreased insulin/insulin growth factor-1-like signaling in Caenorhabditis elegans (13, 31).A possible mechanism for the late onset of aggregation-mediated toxicity is age-related impairment of the UPS, because loss-of-function mutations in genes encoding UPS components can enhance the cytotoxicity of protein aggregation in dominantly inherited neurodegenerative diseases (4, 5, 18). In addition, an age-related decline of proteasome activity has been observed in the tissues of humans and other mammals (8) and in aged flies (36). Considering the role of the proteasome in neuroprotection and the age dependence of most neurodegenerative diseases, the age-related decline of proteasome activity could well be a key factor both in normal aging and in the late onset and/or progression of neurodegenerative diseases. However, the mechanism underlying the age-related decline of proteasome activity remains to be elucidated, and there is no direct genetic evidence showing that the age-related decline of proteasome activity causes age-related aggregation-mediated toxicity in normal aging and in age-related neurodegenerative diseases.Here, we studied the age-related decline of proteasome activity by using Drosophila melanogaster and found age-related attenuation of the 26S proteasome activity and abundance that was associated with impaired assembly of the 26S proteasome with the 19S regulatory particle (RP) and the 20S proteasome. In a genetic gain-of-function screen, we identified Rpn11, which encodes one of the lid subunits in the 19S RP, as a suppressor of the age-dependent progression of a polyglutamine-induced neurodegenerative phenotype. The overexpression of Rpn11 prevented the age-related reduction of the 26S proteasome activity, which suppressed the age-dependent accumulation of ubiquitinated proteins and extended the life span. On the other hand, the loss of function of Rpn11 enhanced the age-related reduction of 26S proteasome activity, leading to a shorter life span, a premature age-dependent accumulation of ubiquitinated proteins, and an early onset of a neurodegenerative phenotype. Our results demonstrate for the first time that the age-related reduction of the 26S proteasome activity is a key factor in the induction of certain age-related biological changes and in the increased risk for the onset or progression of neurodegenerative diseases. Our findings imply that improving the amount and/or activity of the 26S proteasome by overexpressing a lid subunit, such as Rpn11, could provide an extension to the mean life span and prevent the age-dependent onset or progression of neurodegeneration.  相似文献   
995.
Extracellular acidification inhibited formyl-Met-Leu-Phe- or C5a-induced superoxide anion (O2) production in differentiated HL-60 neutrophil-like cells and human neutrophils. A cAMP-increasing agonist, prostaglandin E1, also inhibited the formyl peptide-induced O2 production. The inhibitory action on the O2 production by extracellular acidic pH was associated with cAMP accumulation and partly attenuated by H89, a protein kinase A inhibitor. A significant amount of mRNAs for T-cell death-associated gene 8 (TDAG8) and other proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1)-family receptors is expressed in these cells. These results suggest that cAMP/protein kinase A, possibly through proton-sensing G-protein-coupled receptors, may be involved in extracellular acidic pH-induced inhibition of O2 production.  相似文献   
996.
Embryonic carcinoma (EC) cells, which are malignant stem cells of teratocarcinoma, have numerous morphological and biochemical properties in common with pluripotent stem cells such as embryonic stem (ES) cells. However, three EC cell lines (F9, P19 and PCC3) show different developmental potential and self‐renewal capacity from those of ES cells. All three EC cell lines maintain self‐renewal capacity in serum containing medium without Leukemia Inhibitory factor (LIF) or feeder layer, and show limited differentiation capacity into restricted lineage and cell types. To reveal the underlying mechanism of these characteristics, we took the approach of characterizing extrinsic factors derived from EC cells on the self‐renewal capacity and pluripotency of mouse ES cells. Here we demonstrate that EC cell lines F9 and P19 produce factor(s) maintaining the undifferentiated state of mouse ES cells via an unidentified signal pathway, while P19 and PCC3 cells produce self‐renewal factors of ES cells other than LIF that were able to activate the STAT3 signal; however, inhibition of STAT3 activation with Janus kinase inhibitor shows only partial impairment on the maintenance of the undifferentiated state of ES cells. Thus, these factors present in EC cells‐derived conditioned medium may be responsible for the self‐renewal capacity of EC and ES cells independently of LIF signaling.  相似文献   
997.
Glypican 3 (GPC3), a GPI-anchored heparan sulfate proteoglycan, is expressed in the majority of hepatocellular carcinoma (HCC) tissues. Using MRL/lpr mice, we successfully generated a series of anti-GPC3 monoclonal antibodies (mAbs). GPC3 was partially cleaved between Arg358 and Ser359, generating a C-terminal 30-kDa fragment and an N-terminal 40-kDa fragment. All mAbs that induced antibody-dependent cellular cytotoxicity (ADCC) and/or complement-dependent cytotoxicity (CDC) against cells expressing GPC3 recognized the 30-kDa fragment, indicating that the C-terminal region of GPC3 serves as an epitope for mAb with ADCC and/or CDC inducing activities. Chimeric mAbs with Fc replaced by human IgG1 were created from GC33, one of the mAbs that reacted with the C-terminal 30-kDa fragment. Chimeric GC33 induced not only ADCC against GPC3-positive human HCC cells but also was efficacious against the Huh-7 human HCC xenograft. Thus, mAbs against the C-terminal 30-kDa fragment such as GC33 are useful in therapy targeting HCC.  相似文献   
998.
We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5′-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3′-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.  相似文献   
999.
To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of VH-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to Sμ as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since Sμ sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号