首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5329篇
  免费   333篇
  国内免费   5篇
  5667篇
  2023年   18篇
  2022年   31篇
  2021年   65篇
  2020年   37篇
  2019年   58篇
  2018年   72篇
  2017年   69篇
  2016年   110篇
  2015年   165篇
  2014年   194篇
  2013年   351篇
  2012年   321篇
  2011年   333篇
  2010年   165篇
  2009年   184篇
  2008年   335篇
  2007年   312篇
  2006年   324篇
  2005年   326篇
  2004年   312篇
  2003年   275篇
  2002年   251篇
  2001年   77篇
  2000年   78篇
  1999年   93篇
  1998年   73篇
  1997年   44篇
  1996年   50篇
  1995年   51篇
  1994年   60篇
  1993年   47篇
  1992年   81篇
  1991年   56篇
  1990年   44篇
  1989年   59篇
  1988年   57篇
  1987年   52篇
  1986年   34篇
  1985年   55篇
  1984年   41篇
  1983年   41篇
  1982年   21篇
  1981年   21篇
  1980年   19篇
  1979年   26篇
  1978年   17篇
  1976年   20篇
  1974年   19篇
  1970年   16篇
  1968年   14篇
排序方式: 共有5667条查询结果,搜索用时 15 毫秒
71.
The mitotic spindle checkpoint prevents the onset of anaphase and subsequent cell division until chromosomes are properly aligned on a bipolar spindle. Thus, it regulates the cell division cycle by keeping cells with defective spindles from leaving mitosis. The budding uninhibited by benzimidazole (Bub1) is a key component of mitotic checkpoint. Bub1 encodes a serine/threonine kinase required for mitotic spindle checkpoint function. The regulation of cell morphology in eukaryotic cells is a complex process involving major components of the cytoskeleton including actin microfilaments, microtubules, and intermediate filaments (IFs). Here we show that Bub1 directly affects the structural integrity of IFs. Constitutive expression of Bub1 caused disappearance of filamentous vimentin, a type III IF, and consequently changed cell morphology. Expression of kinase domain—deleted Bub1 induced neither morphological change nor disappearance of vimentin. These observations suggest that Bub1 not only regulates the cell cycle, but also may be involved in the cytoskeletal control in interphase cells.  相似文献   
72.
Apoptosis is an evolutionarily conserved mechanism that removes damaged or unwanted cells, effectively maintaining cellular homeostasis. It has long been suggested that a deficiency in this type of naturally occurring cell death could potentially lead to necrosis, resulting in the release of endogenous immunogenic molecules such as damage-associated molecular patterns (DAMPs) and a noninfectious inflammatory response. However, the details about how danger signals from apoptosis-deficient cells are detected and translated to an immune response are largely unknown. In this study, we found that Drosophila mutants deficient for Dronc, the key initiator caspase required for apoptosis, produced the active form of the endogenous Toll ligand Spätzle (Spz). We speculated that, as a system for sensing potential DAMPs in the hemolymph, the dronc mutants constitutively activate a proteolytic cascade that leads to Spz proteolytic processing. We demonstrated that Toll signaling activation required the action of Persephone, a CLIP domain serine protease that usually reacts to microbial proteolytic activities. Our findings show that the Persephone proteolytic cascade plays a crucial role in mediating DAMP-induced systemic responses in apoptosis-deficient Drosophila mutants.  相似文献   
73.
74.
To elucidate the intrinsic mechanisms of neurotoxicity induction, including those underlying neural cell death and neurodegeneration, we developed a gain-of-function screen for gene products causing neural cell loss. To identify novel genes with a cell-death-related function in neurons, we screened 4,964 Drosophila GS lines, in which one or two genes from much of the Drosophila genome can be overexpressed. Approximately 0.68% of the GS lines produced phenotypes involving a loss of postmitotic neurons. Of these, we identified and characterized the endd2 gene, which encodes the Drosophila ortholog of Sec61alpha (DSec61alpha), an endoplasmic reticulum protein with protein translocation activity. Ectopic expression of DSec61alpha caused neural cell death accompanied by the accumulation of ubiquitinated proteins, which was mediated by DSec61alpha's translocon activity. This supported our previous observation that the DSec61alpha translocon contributes to expanded polyglutamine-mediated neuronal toxicity, which is also associated with ubiquitinated protein accumulation. These data suggest that the translocon may be a novel component of neural cell death and degeneration pathways. Our approach can be used to identify potential neurotoxic factors within the whole genome, which will increase our understanding of the molecular mechanisms of various types of cell death, including those associated with human neurodegenerative diseases.  相似文献   
75.
The objective was to prepare mononuclear, binuclear, and insoluble polynuclear oxovanadium(IV)-Schiff base complexes and to use them for sulfoxidation and epoxidation of organic substrates. [VO(salen)] (complex 1) with tetradentate salen(salicylideneethylenediamine) being coordinated in the equatorial plane of oxovanadium(IV), [VO(salap)] (complex 2), and [(VO)2(sal2-dhdabp)] (complex 3) with tridentate salap(salicylideneorthoaminophenol) and sal2-dhdabp(salicylidene-3,3-dihydroxy-4,4-diaminobiphenyl) being bound, respectively, in the equatorial plane, of which polynuclear complexes were constituted as monomer units, were prepared and spectroscopically characterized. A sulfide and olefins were oxidized by use of complexes 1 and 2 (mononuclear), complex 3 (binuclear), and the polynuclear complexes (poly-1 and poly-3) synthesized with 1 and 3, respectively. The reaction rates for poly-1 and -3 were a little lower than those of the corresponding 1 and 3. On oxidation of sulfides, poly-3 exhibited lowering of activity by about 15% in three cycles, while poly-1 showed significant lose of activity with each use. Poly-3 was efficient for the oxidation of the olefins only in the first cycle. It was suggested that the loss of activity depends not only on the coordination geometry of the oxovanadium complex, but also on the kind of the substrate.  相似文献   
76.
Abundant evidences demonstrate that deuterium oxide (D2O) modulates various secretory activities, but specific mechanisms remain unclear. Using AtT20 cells, we examined effects of D2O on physiological processes underlying β-endorphin release. Immunofluorescent confocal microscopy demonstrated that 90% D2O buffer increased the amount of actin filament in cell somas and decreased it in cell processes, whereas β-tubulin was not affected. Ca2+ imaging demonstrated that high-K+-induced Ca2+ influx was not affected during D2O treatment, but was completely inhibited upon D2O washout. The H2O/D2O replacement in internal solutions of patch electrodes reduced Ca2+ currents evoked by depolarizing voltage steps, whereas additional extracellular H2O/D2O replacement recovered the currents, suggesting that D2O gradient across plasma membrane is critical for Ca2+ channel kinetics. Radioimmunoassay of high-K+-induced β-endorphin release demonstrated an increase during D2O treatment and a decrease upon D2O washout. These results demonstrate that the H2O-to-D2O-induced increase in β-endorphin release corresponded with the redistribution of actin, and the D2O-to-H2O-induced decrease in β-endorphin release corresponded with the inhibition of voltage-sensitive Ca2+ channels. The computer modeling suggests that the differences in the zero-point vibrational energy between protonated and deuterated amino acids produce an asymmetric distribution of these amino acids upon D2O washout and this causes the dysfunction of Ca2+ channels.  相似文献   
77.
To identify erythroid-specific heme-regulated genes, we performed differential expression analysis between wild-type and heme-deficient erythroblasts, which had been prepared from wild-type and erythroid-specific delta-aminolevulinate synthase-null mouse ES cells, respectively. Among 8737 clones on cDNA array, 40 cDNA clones, including 34 unknown ESTs, were first selected by their high expression profiles in wild-type erythroblasts, and evaluated further for their erythroid-lineage specificity, expression in hematopoietic tissues in vivo, and heme-dependent expression, which yielded 11, 4, and 4 genes, respectively. Because of the selection strategy employed, the final 4 were considered as the newly identified erythroid-specific heme-regulated genes. These 4 genes were uncoupling protein 2, nucleolar spindle-associated protein, cellular nucleic acid-binding protein, and a novel acetyltransferase-like protein. These findings thus suggest that heme may regulate a wide variety of hitherto unrecognized genes, and further analysis of these genes may clarify their role in erythroid cell differentiation.  相似文献   
78.
79.
We previously reported that a soluble CD14-subtype (sCD14-ST) immunochromatographic test (ICT) for plasma is more convenient than chemiluminescent enzyme immunoassay (CLEIA), but plasma separation makes bedside measurements difficult. We developed a new sCD14-ST ICT for whole blood and investigated whether quantitative determinations of sCD14-ST by ICT were useful for diagnosing sepsis and severe sepsis/septic shock. We studied 20 patients who fulfilled two or more systemic inflammatory response syndrome (SIRS) criteria and 32 patients who had been diagnosed with sepsis or severe sepsis/septic shock. Whole blood was collected on day 0 (on admission) and day 7, and the sCD14-ST concentration was quantitatively measured by CLEIA and ICT for whole blood. The patients’ Acute Physiology and Chronic Health Evaluation (APACHE) II, Sequential Organ Failure Assessment (SOFA), and Mortality in Emergency Department Sepsis (MEDS) scores were also calculated. The cut-off values obtained by the quantitative measurements made by ICT were 464.5 pg/mL for sepsis and 762.7 pg/mL for severe sepsis/septic shock (P < 0.0001). A Bland–Altman plot showed that no fixed bias or proportional bias was detected between CLEIA and quantitative ICT for whole blood. sCD14-ST concentrations were significantly correlated with APACHE II, SOFA, and MEDS scores (P < 0.0001). These results suggest that the new sCD14-ST ICT for whole blood may be a useful tool for the convenient, rapid bedside diagnosis and treatment of sepsis.  相似文献   
80.
Investigation of seasonal variation in fungal communities is essential for understanding biodiversity and ecosystem functions. However, the conventional sampling method, with substrate removal and high spatial heterogeneity of community composition, makes surveying the seasonality of fungal communities challenging. Recently, water environmental DNA (eDNA) analysis has been explored for its utility in biodiversity surveys. In this study, we assessed whether the seasonality of fungal communities can be detected by monitoring eDNA in a forest stream. We conducted monthly water sampling in a forest stream over 2 years and used DNA metabarcoding to identify fungal eDNA. The stream water contained DNA from functionally diverse aquatic and terrestrial fungi, such as plant decomposers, parasites and mutualists. The variation in the fungal assemblage showed a regular annual periodicity, meaning that the assemblages in a given season were similar, irrespective of the year or sampling. Furthermore, the strength of the annual periodicity varied among functional groups. Our results suggest that forest streams may act as a ‘trap’ for terrestrial fungal DNA derived from different habitats, allowing the analysis of fungal DNA in stream water to provide information about the temporal variation in fungal communities in both the aquatic and the surrounding terrestrial ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号