首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   22篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   4篇
  2012年   9篇
  2011年   8篇
  2010年   12篇
  2009年   12篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   6篇
  2004年   6篇
  2003年   11篇
  2002年   13篇
  2001年   1篇
  1999年   7篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有182条查询结果,搜索用时 21 毫秒
31.
In the Single Protein Production (SPP) method, all E. coli cellular mRNAs are eliminated by the induction of MazF, an ACA-specific mRNA interferase. When an mRNA for a membrane protein, engineered to have no ACA sequences without altering its amino acid sequence, is induced in the MazF-induced cells, E. coli is converted into a bioreactor producing only the targeted membrane protein. Here we demonstrate that three prokaryotic inner membrane proteins, two prokaryotic outer membrane proteins, and one human virus membrane protein can be produced at very high levels, and assembled in appropriate membrane fractions. The condensed SPP (cSPP) system was used to selectively produce isotope-enriched membrane proteins for NMR studies in up to 150-fold condensed culture without affecting protein yields, providing more than 99% cost saving for isotopes. As a novel application of the cSPP system for studies of membrane proteins prior to purification we also demonstrate, for the first time, fast detergent screening by microcoil NMR and well-resolved NMR spectra of several targeted integral membrane proteins obtained without purification.  相似文献   
32.
Determination of high-quality small protein structures by nuclear magnetic resonance (NMR) methods generally requires acquisition and analysis of an extensive set of structural constraints. The process generally demands extensive backbone and sidechain resonance assignments, and weeks or even months of data collection and interpretation. Here we demonstrate rapid and high-quality protein NMR structure generation using CS-Rosetta with a perdeuterated protein sample made at a significantly reduced cost using new bacterial culture condensation methods. Our strategy provides the basis for a high-throughput approach for routine, rapid, high-quality structure determination of small proteins. As an example, we demonstrate the determination of a high-quality 3D structure of a small 8 kDa protein, E. coli cold shock protein A (CspA), using <4 days of data collection and fully automated data analysis methods together with CS-Rosetta. The resulting CspA structure is highly converged and in excellent agreement with the published crystal structure, with a backbone RMSD value of 0.5 Å, an all atom RMSD value of 1.2 Å to the crystal structure for well-defined regions, and RMSD value of 1.1 Å to crystal structure for core, non-solvent exposed sidechain atoms. Cross validation of the structure with 15N- and 13C-edited NOESY data obtained with a perdeuterated 15N, 13C-enriched 13CH3 methyl protonated CspA sample confirms that essentially all of these independently-interpreted NOE-based constraints are already satisfied in each of the 10 CS-Rosetta structures. By these criteria, the CS-Rosetta structure generated by fully automated analysis of data for a perdeuterated sample provides an accurate structure of CspA. This represents a general approach for rapid, automated structure determination of small proteins by NMR.  相似文献   
33.
To better investigate the relationship between sequence, stability, and folding, the Streptococcus pyogenes collagenous domain CL (Gly-Xaa-Yaa)(79) was divided to create three recombinant triple helix subdomains A, B, and C of almost equal size with distinctive amino acid features: an A domain high in polar residues, a B domain containing the highest concentration of Pro residues, and a very highly charged C domain. Each segment was expressed as a monomer, a linear dimer, and a linear trimer fused with the trimerization domain (V domain) in Escherichia coli. All recombinant proteins studied formed stable triple helical structures, but the stability varied depending on the amino acid sequence in the A, B, and C segments and increased as the triple helix got longer. V-AAA was found to melt at a much lower temperature (31.0 °C) than V-ABC (V-CL), whereas V-BBB melted at almost the same temperature (~36-37 °C). When heat-denatured, the V domain enhanced refolding for all of the constructs; however, the folding rate was affected by their amino acid sequences and became reduced for longer constructs. The folding rates of all the other constructs were lower than that of the natural V-ABC protein. Amino acid substitution mutations at all Pro residues in the C fragment dramatically decreased stability but increased the folding rate. These results indicate that the thermostability of the bacterial collagen is dominated by the most stable domain in the same manner as found with eukaryotic collagens.  相似文献   
34.
The existence of a free form of a specific lipoprotein of molecular weight 7,200 was examined in the envelopes of several gram-negative bacteria. When the envelope proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, distinct peaks were observed in Salmonella typhimurium, Serratia marcescens, and Pseudomonas aeruginosa at the same position as the free form of the lipoprotein of Escherichia coli. However, the peak was not observed in Proteus mirabilis. The protein at the peak in S. typhimurium was shown to contain little or no histidine as expected from the amino acid composition of the lipoprotein. Furthermore, antiserum against the highly purified lipoprotein from E. coli was shown to react with the proteins from S. typhimurium and S. marcescens and to form the specific immunoprecipitates. In contrast, the protein from P. aeruginosa did not react with the antiserum at all. Thus, it is concluded that S. typhimurium and S. marcescens have the free form of the lipoprotein in their envelopes as does E. coli. P. aeruginosa contains a protein of the same size as the lipoprotein, but it is not certain whether the protein is the same structural protein as the lipoprotein from E. coli. P. mirabilis may not have any free form of the lipoprotein, may have it in a very small amount, or may have a lipoprotein of different molecular weight serving the same function.  相似文献   
35.
Escherichia coli contains operons called "addiction modules," encoding toxin and antitoxin, which are responsible for growth arrest and cell death. Here, we demonstrate that MazF toxin encoded by "mazEF addiction module" is a sequence-specific (ACA) endoribonuclease functional only for single-stranded RNA. MazF works as a ribonuclease independent of ribosomes, and is, therefore, functionally distinct from RelE, another E. coli toxin, which assists mRNA cleavage at the A site on ribosomes. Upon induction, MazF cleaves whole cellular mRNAs to efficiently block protein synthesis. Purified MazF inhibited protein synthesis in both prokaryotic and eukaryotic cell-free systems. This inhibition was released by MazE, the labile antitoxin against MazF. Thus, MazF functions as a toxic endoribonuclease to interfere with the function of cellular mRNAs by cleaving them at specific sequences leading to rapid cell growth arrest and cell death. The role of such endoribonucleases may have broad implication in cell physiology under various growth conditions.  相似文献   
36.
The New York Consortium on Membrane Protein Structure (NYCOMPS) was formed to accelerate the acquisition of structural information on membrane proteins by applying a structural genomics approach. NYCOMPS comprises a bioinformatics group, a centralized facility operating a high-throughput cloning and screening pipeline, a set of associated wet labs that perform high-level protein production and structure determination by x-ray crystallography and NMR, and a set of investigators focused on methods development. In the first three years of operation, the NYCOMPS pipeline has so far produced and screened 7,250 expression constructs for 8,045 target proteins. Approximately 600 of these verified targets were scaled up to levels required for structural studies, so far yielding 24 membrane protein crystals. Here we describe the overall structure of NYCOMPS and provide details on the high-throughput pipeline.  相似文献   
37.
38.
Summary We have developed a simple, rapid and powerful method for the cloning of chromosomal mutations from total cellular DNA in a single step using a plasmid carrying the clined wild-type locus of interest and a convenient selectable marker such as antibiotic resistance. This method relies upon the ability of the cloned wild-type gene to form a heteroduplex with the mutant chromosomal locus. The plasmid from primary transformants can be screened rapidly by size; more than 50% of plasmids of the correct size contained the mutant locus. When this method was used to clone two chromosomal mutations in the envZ gene of Escherichia coli, a locus which encodes a membrane-bound sensory protein involved in the osmoregulation of outer membrane porin biosynthesis, more than 50% of the retransformants from the plasmids selected by size were found to exhibit the mutant phenotype. Preliminary characterization of these mutant alleles is discussed. This novel and powerful method should be generally applicable in any system where the cloned locus is available.This work was presented at the 86th Annual Meeting of the American Society for Microbiology, March 1986, Washingnton, D.C.  相似文献   
39.
Summary We have fortuitously created an in-frame insertion mutation in the cloned ompR gene of Escherichia coli in the course of an experiment involving linker insertion mutagenesis. According to the DNA sequence, the mutant protein has an insertion at the 53rd amino acid residue, which replaced the original valine, with the sequence Ala-Leu-Glu. The expression level of the mutant protein, OmpRX6, in a minicell system, is similar to that of the wild-type protein and the size of the mutant is slightly larger than the wild type by approxiately 300 daltons. This mutant was completely unable to activate porin expression as the wildtype does, and in addition, this phenotype was shown to be dominant over the wild type. Comparison of the amino acid sequence of OmpRX6 with those of a family of homologous bacterial regulatory proteins revealed that the mutation lies in a domain which is highly conserved among these proteins.  相似文献   
40.

Background

Familial Mediterranean fever (FMF) is an inherited disorder caused by a number of mutations of the Mediterranean fever (MEFV) gene, coding a protein named pyrin that acts as a major regulatory component of the inflammasome. The first-line drug for FMF treatment is colchicine, but 10% of patients with FMF do not respond well to colchicine. Although the efficacy of tocilizumab (TCZ), which is a recombinant, humanized, antihuman interleukin 6 (IL-6) receptor monoclonal antibody, has been reported to prevent FMF attacks, the effects of TCZ on individuals with colchicine-resistant or colchicine-intolerant FMF have not been evaluated in a randomized clinical trial.

Methods/design

In this phase III, investigator-initiated, multicenter, double-blind, randomized, parallel-group trial, the efficacy and safety of TCZ will be compared with placebo in patients with colchicine-resistant or colchicine-intolerant FMF. The study will be conducted in nine centers in Japan. Participants (n =?24) will be randomly assigned to receive 162?mg of TCZ (n =?12) or placebo (n =?12) administered subcutaneously once weekly for 24?weeks. Rescue treatment will be allowed if rescue criteria are met. A primary endpoint is the number of fever attacks until 24?weeks. Secondary endpoints include the number of occurrences of accompanying symptoms during attacks; the time until a fever attack occurs; the duration of fever attacks; serum C-reactive protein and serum amyloid A; 36-item Short Form Health Survey; general evaluation by a physician (100-mm visual analogue scale); body temperature; the percentage of subjects who achieve FMF 50 at 12?weeks and 24?weeks; and pharmacodynamic assessment, including the measurement of serum TCZ level and soluble IL-6 receptor.

Discussion

The study is expected to produce evidence regarding the efficacy of a potential new therapeutic agent, TCZ, in improving the clinical course and outcome for patients with colchicine-resistant or colchicine-intolerant FMF.

Trial registration

University Hospital Medical Information Network Clinical Trials Registry, UMIN000028010. Registered on 7 July 2017.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号