首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   72篇
  2022年   7篇
  2021年   14篇
  2020年   5篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   15篇
  2015年   25篇
  2014年   34篇
  2013年   80篇
  2012年   59篇
  2011年   46篇
  2010年   41篇
  2009年   35篇
  2008年   52篇
  2007年   51篇
  2006年   53篇
  2005年   53篇
  2004年   57篇
  2003年   50篇
  2002年   48篇
  2001年   13篇
  2000年   30篇
  1999年   20篇
  1998年   13篇
  1997年   7篇
  1996年   14篇
  1995年   13篇
  1994年   9篇
  1993年   10篇
  1992年   15篇
  1991年   14篇
  1990年   10篇
  1989年   15篇
  1988年   10篇
  1987年   6篇
  1986年   13篇
  1985年   11篇
  1984年   13篇
  1983年   10篇
  1982年   7篇
  1980年   5篇
  1979年   10篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1970年   3篇
  1969年   3篇
  1967年   5篇
  1966年   3篇
排序方式: 共有1062条查询结果,搜索用时 15 毫秒
111.
Biotinylated proteins and peptides have been used as popular ligands for characterization of cell surface receptors by a variety of methods including flow cytometry. The number and the location of biotin moieties incorporated could alter the structural and physicochemical properties of ligands, although biotin is thought to be such a small molecule (244Da) that it is capable of being conjugated to most proteins without affecting their activity. Here, we demonstrate that the biotinylated HSP70 molecule via primary amines bound to epithelium-like HEK 293 cells in a saturable manner whereas the unlabeled counterparts of HSP70 other than mouse Hsp72 do not. This binding was not competed by either HSP70 or the biotin entity itself. Interestingly, the biotinylated HSP70 also elicited the production of CC-chemokine RANTES independent of CD40 signaling. This response occurred regardless of sequence diversity of HSP70 derived from different species, and neither the biotinylated ovalbumin nor the unlabeled HSP70 cross-linked with a biotinylated protein stimulated a significant level of RANTES production which was induced by biotinylated HSP70 itself. Our findings suggest that modification of HSP70 such as biotinylation may function as a biological alarm signal in the innate immune system.  相似文献   
112.
The interaction of sesamin, one of the most abundant lignans in sesame seed, and types of dietary fats affecting hepatic fatty acid oxidation was examined in rats. Rats were fed purified experimental diets supplemented with 0% or 0.2% sesamin (1:1 mixture of sesamin and episesamin), and containing 8% of either palm, safflower or fish oil for 15 days. Among the groups fed sesamin-free diets, the activity of various fatty acid oxidation enzymes was higher in rats fed fish oil than in those fed palm and safflower oils. Dietary sesamin increased enzyme activities in all groups of rats given different fats. The extent of the increase depended on dietary fat type, and a diet containing sesamin and fish oil in combination appeared to increase many of these parameters synergistically. In particular, the peroxisomal palmitoyl-CoA oxidation rate and acyl-CoA oxidase activity levels were much higher in rats fed sesamin and fish oil in combination than in animals fed sesamin and palm or safflower oil in combination. Analyses of mRNA levels revealed that a diet containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes and PEX11alpha, a peroxisomal membrane protein, in a synergistic manner while it increased the gene expression of mitochondrial fatty acid oxidation enzymes and microsomal cytochrome P-450 IV A1 in an additive manner. It was concluded that a diet containing sesamin and fish oil in combination synergistically increased hepatic fatty acid oxidation primarily through up-regulation of the gene expression of peroxisomal fatty acid oxidation enzymes.  相似文献   
113.
Iwaki M  Puustinen A  Wikström M  Rich PR 《Biochemistry》2004,43(45):14370-14378
The structure of the P(M) intermediate of Paracoccus denitrificans cytochrome c oxidase was investigated by perfusion-induced attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Transitions from the oxidized to P(M) state were initiated by perfusion with CO/oxygen buffer, and the extent of conversion was quantitated by simultaneously monitoring visible absorption changes. In prior work, tentative assignments of bands were proposed for heme a(3), a change in the environment of the protonated state of a carboxylic acid, and a covalently linked histidine-tyrosine ligand to Cu(B) that has been found in the catalytic site. In this work, reduced minus oxidized difference spectra at pH 6.5 and 9.0 and P(M) minus oxidized difference spectra at pH 9.0 were compared in unlabeled, universally (15)N-labeled, and tyrosine-ring-d(4)-labeled proteins to improve these assignments. In the reduced minus oxidized difference spectrum, (15)N labeling resulted in large changes in the amide II region and a 9 cm(-1) downshift in a 1105 cm(-1) trough that is attributed to histidine. In contrast, changes induced by tyrosine-ring-d(4) labeling were barely detectable where the isotope-sensitive bands are expected. Both isotope substitutions had large effects on P(M) minus oxidized difference spectra. A prominent trough at 1542 cm(-1) was shifted to 1527 cm(-1) with (15)N labeling, and its magnitude was diminished with the appearance of a 1438 cm(-1) trough with tyrosine-ring-d(4) labeling. Both isotope substitutions also had large effects on a 1314 cm(-1) trough in the same spectra. These shifts indicate that the bands are linked to both a nitrogenous compound and a tyrosine, the most obvious candidate being the covalent histidine-tyrosine ligand of Cu(B). Comparison with model material data suggests that the tyrosine hydroxyl group is protonated when the binuclear center is oxidized but deprotonated in the P(M) intermediate. Positive bands at 1519 and 1570 cm(-1) were replaced with bands at 1504 and 1556 cm(-1), respectively, with tyrosine-ring-d(4) labeling, are characteristic of upsilon(7a)(C-O) and upsilon(C-C) bands of neutral phenolic radicals, and most likely reflect the formation of the neutral radical state of the histidine-tyrosine ligand in P(M).  相似文献   
114.
The prolyl peptidase that removes the tetra-peptide of pro-transglutaminase was purified from Streptomyces mobaraensis mycelia. The substrate specificity of the enzyme using synthetic peptide substrates showed proline-specific activity with not only tripeptidyl peptidase activity, but also tetrapeptidyl peptidase activity. However, the enzyme had no other exo- and endo-activities. This substrate specificity is different from proline specific peptidases so far reported. The enzyme gene was cloned, based on the direct N-terminal amino acid sequence of the purified enzyme, and the entire nucleotide sequence of the coding region was determined. The deduced amino acid sequence revealed an N-terminal signal peptide sequence (33 amino acids) followed by the mature protein comprising 444 amino acid residues. This enzyme shows no remarkable homology with enzymes belonging to the prolyl oligopeptidase family, but has about 65% identity with three tripeptidyl peptidases from Streptomyces lividans, Streptomyces coelicolor, and Streptomyces avermitilis. Based on its substrate specificity, a new name, "prolyl tri/tetra-peptidyl aminopeptidase," is proposed for the enzyme.  相似文献   
115.
We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression.  相似文献   
116.
Cofilin plays an essential role in actin filament dynamics and membrane protrusion in motile cells. Cofilin is inactivated by phosphorylation at Ser-3 by LIM kinase and reactivated by dephosphorylation by cofilin-phosphatase Slingshot (SSH). Although cofilin is dephosphorylated in response to various extracellular stimuli, signaling pathways regulating SSH activation and cofilin dephosphorylation have remained to be elucidated. Here we show that insulin stimulates the phosphatase activity of Slingshot-1L (SSH1L) and cofilin dephosphorylation in cultured cells, in a manner dependent on phosphoinositide 3-kinase (PI3K) activity. Consistent with this, the level of Ser-3-phosphorylated cofilin is increased in PTEN (phosphatase and tensin homolog deleted in chromosome 10)-overexpressing cells and decreased in PTEN-deficient cells. Insulin induced the accumulation of SSH1L and active Akt (a downstream effector of PI3K), together with a PI3K product phosphatidylinositol 3,4,5-trisphosphate, onto membrane protrusions. Cofilin, but not Ser-3-phosphorylated cofilin, accumulated in membrane protrusions in insulin-stimulated cells, indicating that cofilin is dephosphorylated in these areas. Finally, suppression of SSH1L expression by RNA interference abolished insulin-induced cofilin dephosphorylation and the membrane protrusion. These findings suggest that SSH1L is activated downstream of PI3K and plays a critical role in insulin-induced membrane protrusion by dephosphorylating and activating cofilin.  相似文献   
117.
Using 2-D DIGE, we constructed a quantitative 2-D database including 309 proteins corresponding to 389 protein spots across 42 lymphoid neoplasm cell lines. The proteins separated by 2-D PAGE were identified by MS and assigned to the expression data obtained by 2-D DIGE. The cell lines were categorized into four groups: those from Hodgkin's lymphoma (HL) (4 cell lines), B cell malignancies (19 cell lines), T cell malignancies (16 cell lines), and natural killer (NK) cell malignancies (3 cell lines). We characterized the proteins in the database by classifying them according to their expression level. We found 28 proteins with more than a 2-fold difference between the cell line groups. We also noted the proteins that allowed multidimensional separation to be achieved (1) between HL cells and other cells, (2) between the cells derived from B cells, T cells and NK cells, and (3) between HL cells and anaplastic large cell lymphoma cells. Decision tree classification identified five proteins that could be used to classify the 42 cell lines according to differentiation. These results suggest that the quantitative 2-D database using 2-D DIGE will be a useful resource for studying the mechanisms underlying the differentiation phenotypes of lymphoid neoplasms.  相似文献   
118.
Personalized peptide vaccination (PPV) combined with chemotherapy could be a novel approach for many cancer patients. In this randomized study, we evaluated the anti-tumor effect and safety of PPV plus low-dose estramustine phosphate (EMP) as compared to standard-dose EMP for HLA-A2- or -A24-positive patients with castration resistant prostate cancer. Patients were randomized into groups receiving either PPV plus low-dose EMP (280 mg/day) or standard-dose EMP (560 mg/day). After disease progression, patients were switched to the opposite regime. The primary end point was progression-free survival (PFS). We randomly assigned 28 patients to receive PPV plus low-dose EMP and 29 patients to receive standard-dose EMP. Nineteen events in the PPV group and 20 events in the EMP group occurred during the first treatment. Median PFS for the first treatment was 8.5 months in the PPV group and 2.8 months in the EMP group with a hazard ratio (HR) of 0.28 (95% CI, 0.14–0.61; log-rank P = 0.0012), while there was no difference for median PFS for the second treatment. The HR for overall survival was 0.3 (95% CI, 0.1–0.91) in favor of the PPV plus low-dose EMP group (log-rank, P = 0.0328). The PPV plus low-dose EMP was well tolerated without major adverse effects and with increased levels of IgG and cytotoxic-T cell responses to the vaccinated peptides. PPV plus low-dose EMP was associated with an improvement in PSA-based PFS as compared to the standard-dose EMP alone.  相似文献   
119.
120.
We investigated the changes in soil microbial biomass C (MBC), microbial biomass N (MBN) and N mineralization in Sasa kurilensis-present (SP) and S. kurilensis-removed (SR) stands in a Betula ermanii forest. The mean levels of MBC and MBN were significantly higher in the SR stand than in the SP, which may have positively influenced the N-mineralization rate as depicted by a significant positive correlation between these variables and the N-mineralization rate. N immobilization and subsequent N release along with decreased use of available soil N due to S. kurilensis removal may have ensured greater N availability in the SR stand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号