首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   20篇
  2022年   5篇
  2021年   5篇
  2019年   2篇
  2018年   2篇
  2016年   5篇
  2015年   5篇
  2014年   12篇
  2013年   25篇
  2012年   14篇
  2011年   10篇
  2010年   9篇
  2009年   17篇
  2008年   18篇
  2007年   22篇
  2006年   22篇
  2005年   18篇
  2004年   25篇
  2003年   20篇
  2002年   24篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
  1968年   3篇
  1966年   3篇
  1965年   1篇
  1964年   2篇
  1963年   2篇
  1962年   3篇
排序方式: 共有329条查询结果,搜索用时 125 毫秒
71.
The nucleotide messenger cyclic di-GMP (c-di-GMP) plays a central role in the regulation of motility, virulence, and biofilm formation in many pathogenic bacteria. EAL domain-containing phosphodiesterases are the major signaling proteins responsible for the degradation of c-di-GMP and maintenance of its cellular level. We determined the crystal structure of a single mutant (R286W) of the response regulator RocR from Pseudomonas aeruginosa to show that RocR exhibits a highly unusual tetrameric structure arranged around a single dyad, with the four subunits adopting two distinctly different conformations. Subunits A and B adopt a conformation with the REC domain located above the c-di-GMP binding pocket, whereas subunits C and D adopt an open conformation with the REC domain swung to the side of the EAL domain. Remarkably, the access to the substrate-binding pockets of the EAL domains of the open subunits C and D are blocked in trans by the REC domains of subunits A and B, indicating that only two of the four active sites are engaged in the degradation of c-di-GMP. In conjunction with biochemical and biophysical data, we propose that the structural changes within the REC domains triggered by the phosphorylation are transmitted to the EAL domain active sites through a pathway that traverses the dimerization interfaces composed of a conserved regulatory loop and the neighboring motifs. This exquisite mechanism reinforces the crucial role of the regulatory loop and suggests that similar regulatory mechanisms may be operational in many EAL domain proteins, considering the preservation of the dimerization interface and the spatial arrangement of the regulatory domains.  相似文献   
72.
Mammalian transglutaminase (TGase) catalyzes covalent cross-linking of peptide-bound lysine residues or incorporation of primary amines to limited glutamine residues in substrate proteins. Using an unbiased M13 phage display random peptide library, we developed a screening system to elucidate primary structures surrounding reactive glutamine residue(s) that are preferred by TGase. Screening was performed by selecting phage clones expressing peptides that incorporated biotin-labeled primary amine by the catalytic reactions of TGase 2 and activated Factor XIII (Factor XIIIa). We identified several amino acid sequences that were preferred as glutamine donor substrates, most of which have a marked tendency for individual TGases: TGase 2, QxPphiD(P), QxPphi, and QxxphiDP; Factor XIIIa, QxxphixWP (where x and phi represent a non-conserved and a hydrophobic amino acid, respectively). We further confirmed that the sequences were favored for transamidation using modified glutathione S-transferase (GST) for recombinant peptide-GST fusion proteins. Most of the fusion proteins exhibited a considerable increase in incorporation of primary amines over that of modified GST alone. Furthermore, we identified the amino acid sequences that demonstrated higher specificity and inhibitory activity in the cross-linking reactions by TGase 2 and Factor XIIIa.  相似文献   
73.
The hydroxyl (OH) radical, which is generated in polluted dew water on leaf surfaces of the Japanese apricot (Prunus mume), is known to be a potent oxidant. In order to investigate the effects of the OH radical formed in polluted dew water on the photosynthesis and growth of 3-year-old seedlings of P. mume, OH radical-generating solutions simulating polluted dew water were sprayed in the early morning as a mist throughout a growing season onto the leaf surfaces of seedlings growing in experimental greenhouses. Four OH radical-generating solutions (0, 6, 18 and 54 M H2O2 with Fe(III) and an oxalate ion) were used in the mist treatment. Five months after the beginning of treatment, the leaves exposed to the mist containing 54 M H2O2 showed a significantly smaller maximum CO2 assimilation rate (Amax) and stomatal conductance (gs) as compared to the leaves exposed to the mist containing 0 M H2O2. Exposure of P. mume seedlings to the OH radical-generating mist had caused a reduction in the dry weight and relative growth rate (RGR) of the above-ground parts (stem + branch) at the end of the growing season. A significant positive correlation was shown between RGR and Amax. Thus, the effects of oxidants generated in polluted dew water on leaf surfaces can be considered to be a cause of the decrease in leaf photosynthesis and growth of P. mume.  相似文献   
74.
Mutations in SALL4, the human homolog of the Drosophila homeotic gene spalt (sal), cause the autosomal dominant disorder known as Okihiro syndrome. In this study, we show that a targeted null mutation in the mouse Sall4 gene leads to lethality during peri-implantation. Growth of the inner cell mass from the knockout blastocysts was reduced, and Sall4-null embryonic stem (ES) cells proliferated poorly with no aberrant differentiation. Furthermore, we demonstrated that anorectal and heart anomalies in Okihiro syndrome are caused by Sall4 haploinsufficiency and that Sall4/Sall1 heterozygotes exhibited an increased incidence of anorectal and heart anomalies, exencephaly and kidney agenesis. Sall4 and Sall1 formed heterodimers, and a truncated Sall1 caused mislocalization of Sall4 in the heterochromatin; thus, some symptoms of Townes-Brocks syndrome caused by SALL1 truncations could result from SALL4 inhibition.  相似文献   
75.
The biosynthesis of the enediyne moiety of the antitumor natural product calicheamicin involves an iterative polyketide synthase (CalE8) and other ancillary enzymes. In the proposed mechanism for the early stage of 10-membered enediyne biosynthesis, CalE8 produces a carbonyl-conjugated polyene with the assistance of a putative thioesterase (CalE7). We have determined the x-ray crystal structure of CalE7 and found that the subunit adopts a hotdog fold with an elongated and kinked substrate-binding channel embedded between two subunits. The 1.75-Å crystal structure revealed that CalE7 does not contain a critical catalytic residue (Glu or Asp) conserved in other hotdog fold thioesterases. Based on biochemical and site-directed mutagenesis studies, we proposed a catalytic mechanism in which the conserved Arg37 plays a crucial role in the hydrolysis of the thioester bond, and that Tyr29 and a hydrogen-bonded water network assist the decarboxylation of the β-ketocarboxylic acid intermediate. Moreover, computational docking suggested that the substrate-binding channel binds a polyene substrate that contains a single cis double bond at the C4/C5 position, raising the possibility that the C4=C5 double bond in the enediyne moiety could be generated by the iterative polyketide synthase. Together, the results revealed a hotdog fold thioesterase distinct from the common type I and type II thioesterases associated with polyketide biosynthesis and provided interesting insight into the enediyne biosynthetic mechanism.Enediyne natural products represent a family of structurally unique secondary metabolites with potent antitumor and antibiotic activities. Based on the structure of the bicyclic enediyne core, enediyne natural products are categorized into two groups with either a 9- or 10-membered enediyne moiety (1, 2). The antitumor activity of enediyne natural products derives from their capacity to induce chromosomal DNA cleavage through an oxidative radical mechanism (3). The biosynthetic mechanism for the enediyne moiety has been, however, elusive despite clues gleaned from early isotope-feeding experiments (4, 5). Pioneering genetic studies of the biosynthesis of calicheamicin and C-1027 from two research groups yielded major insights into the biosynthetic pathways, suggesting that an iterative polyketide synthase (PKS)5 plays a central role in the assembly of both the 9- and 10-membered enediyne moieties (6, 7). The gene clusters also contain open reading frames encoding hypothetical proteins for the downstream processing of the PKS product. The involvement of similar genes in enediyne biosynthesis was later confirmed for neocarzinostatin, maduropeptin, dynemicin, and several putative enediyne natural products in soil and marine microorganisms (811). Recently, based on the study on the 9-membered enediyne-containing C-1027, Shen and coworkers found that the iterative PKS (SgcE) and the putative thioesterase (SgcE10) generated a conjugated polyene (1,3,5,7,9,11,13-pentadecaheptaene) through an ACP-tethered 3-hydroxy-4,6,8,10,12,14-hexadecahexaene intermediate during co-expression in Escherichia coli (12). The release of the product catalyzed by the putative thioesterase SgcE10 presumably occurs through a combination of hydrolysis, decarboxylation, and dehydration steps. Recent biochemical studies of the iterative PKS (CalE8) from the biosynthetic pathway of calicheamicin also provided insight into the early steps of 10-membered enediyne biosynthesis (13, 14). It was observed that CalE8 produced a linear carbonyl-conjugated polyene (3,5,7,9,11,13-pentadecen-2-one (1)) with the assistance of the putative thioesterase CalE7 (Fig. 1). The putative biosynthetic intermediate 1 was proposed to derive from a 16-carbon-long β-ketocarboxylic intermediate tethered to CalE8 (13). Given the loss of one carbon unit during product release, a decarboxylation process was speculated to occur following the hydrolysis of the thioester bond.Open in a separate windowFIGURE 1.Calicheamicin and its biosynthesis. A, structure of calicheamicin γ′1 with the incorporated acetate units in the 10-membered enediyne moiety highlighted in bold sticks. B, early steps of the biosynthetic pathway of the 10-membered enediyne as proposed by Kong et al. (13). The incorporated acetate units are highlighted in bold sticks with the configuration of the double bonds in the intermediates arbitrarily assigned. (AT, acyl transferase; KS, ketoacyl synthase; ACP, acyl carrier protein; KR, ketoreductase; DH, dehydratase; and PPTase, phosphopantetheinyl transferase.).Polyketide and non-ribosomal peptide synthesis generally involves the so-called type I and type II thioesterases for the release of final product or removal of aberrant products. Type I thioesterases (TE I) are cis-acting domains fused to the C terminus of the most downstream module of PKS or non-ribosomal peptide synthase for the release and cyclization of the final product (15, 16). By contrast, type II thioesterases (TE II) are discrete proteins responsible for the trans hydrolytic release of aberrant products (1719). TE II proteins are structurally and evolutionarily related to a family of well known α/β hydrolase that contain 240–260 residues (20). A common serine esterase motif GXSXG and another downstream motif GXH are conserved in TE II proteins (21, 22). The stand-alone 146-amino acid-containing CalE7 does not belong to the TE II family, because it is neither an α/β fold hydrolase nor a protein containing the two conserved motifs for TE II. Instead, CalE7 shares moderate sequence homology with a family of hotdog fold proteins characterized by a long central α-helix packed against a five-stranded anti-parallel β-sheet. Such hotdog fold proteins include many characterized and hypothetical thioesterases that use acyl CoA as substrates (23). The three-dimensional structure and substrate specificity of several hotdog fold thioesterases have been determined, including YbgC from Helicobacter pylori (24), Paal from E. coli (25), HB8 from Thermos thermophilis (26), FcoT from Mycobacterium tuberculosis (27), YciA from Haemophilus influenzae (28), human THEM2 (25) and 4-hydroxylbenzoyl-CoA thioesterases (4-HBT) from Pseudomonas sp. Strain CBS and Arthrobacter sp. strain SU (2931). Despite their diverse specificity toward acyl substrates (23, 25), all known hotdog fold thioesterases catalyze the hydrolysis of thioester bond using a Glu/Asp residue as nucleophile or general-base catalyst with the exception of FcoT (27). Here we present structural and biochemical data showing that CalE7 does not contain an acidic residue in its active site and is thus likely to utilize a different catalytic mechanism. The results also suggest that CalE7 facilitates a subsequent decarboxylation step to yield the carbonyl-conjugated polyene (1). Hence, the results introduce a hotdog fold thioesterase with a novel product-releasing mechanism in comparison with the traditional type I and II thioesterases associated with the biosynthesis of polyketide natural products. Furthermore, the crystal structure revealed a kinked substrate-binding channel that is predicted to bind a cis-double bond-containing polyene substrate, raising the possibility that CalE8 is able to generate a cis-double bond.  相似文献   
76.
Redox-induced protonation state changes of the Glu residue in the multicopper oxidases, CueO and bilirubin oxidase (BO), were studied by attenuated total reflectance-Fourier transform infrared spectroscopy. By monitoring IR bands of the carboxylic acid CO stretch in the wild-type and Glu-to-Gln mutant enzymes the Glu506 of CueO (Glu463 of BO) was found to be unprotonated in the oxidised and protonated in the reduced forms. The results provided direct evidence for proton uptake by the Glu, suggesting it plays a key role in the proton donation to the activated oxygen species in the catalytic cycle.  相似文献   
77.
We used cutinase from the filamentous fungi Aspergillus oryzae to produce dairy flavors. Secretory and displayed forms of cutinase were investigated using salt-free butter, which is composed mostly of triacylglycerides, as the substrate. The secretory form of cutinase, which was produced in recombinant A. oryzae, was suitable for producing butyric acids (16.8 mol%). Also, cutinase displayed on the cell surface of the yeast Saccharomyces cerevisiae as a fusion protein with α-agglutinin released butyric acid at a 2.7-fold rate (45.4 mol%) higher than that of the secreted form. Yeasts carrying two copies of cutinase genes into their chromosomes, which were constructed using the HELOH method, released free fatty acids rapidly and showed 2-fold higher lipase activity compared with yeasts carrying one copy of the cutinase gene.  相似文献   
78.
The dynamics of protein conformational change of Natronobacterium pharaonis sensory rhodopsin II (NpSRII) and of NpSRII fused to cognate transducer (NpHtrII) truncated at 159 amino acid sequence from the N-terminus (NpSRII-DeltaNpHtrII) are investigated in solution phase at room temperature by the laser flash photolysis and the transient grating methods in real time. The diffusion coefficients of both species indicate that the NpSRII-DeltaNpHtrII exists in the dimeric form in 0.6% dodecyl-beta-maltopyranoside (DM) solution. Rate constants of the reaction processes in the photocycles determined by the transient absorption and grating methods agree quite well. Significant differences were found in the volume change and the molecular energy between NpSRII and NpSRII-DeltaNpHtrII samples. The enthalpy of the second intermediate (L) of NpSRII-DeltaNpHtrII is more stabilized compared with that of NpSRII. This stabilization indicates the influence of the transducer to the NpSRII structure in the early intermediate species by the complex formation. Relatively large molecular volume expansion and contraction were observed in the last two steps for NpSRII. Additional volume expansion and contraction were induced by the presence of DeltaNpHtrII. This volume change, which should reflect the conformational change induced by the transducer protein, suggested that this is the signal transduction process of the NpSRII-DeltaNpHtrII.  相似文献   
79.
The transglutaminase secreted by Streptoverticillium mobaraense is a useful enzyme in the food industry. A fragment of transglutaminase was secreted by Corynebacterium glutamicum when it was coupled on a plasmid to the promoter and signal peptide of a cell surface protein from C. glutamicum. We analyzed the signal peptide and the pro-domain of the transglutaminase gene and found that the signal peptide consists of 31 amino acid residues and the pro-domain consists of 45 residues. When the pro-domain of the transglutaminase was used, the pro-transglutaminase was secreted efficiently by C. glutamicum but had no enzymatic activity. However, when the plasmid carrying the S. mobaraense transglutaminase also encoded SAM-P45, a subtilisin-like serine protease derived from Streptomyces albogriseolus, the peptide bond to the C side of 41-Ser of the pro-transglutaminase was hydrolyzed, and the pro-transglutaminase was converted to an active form. Our findings suggest that C. glutamicum has potential as a host for industrial-scale protein production.  相似文献   
80.
Redox transitions in a film of detergent-purified bovine cytochrome bc(1) complex were investigated by perfusion-induced attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The technique provides a flexible method for generating redox-induced IR changes of components of bovine cytochrome bc(1) complex at a high signal:noise ratio. These IR redox difference spectra arise from perturbations of prosthetic groups and surrounding protein. Visible difference spectra were recorded synchronously using a light beam reflected from the exposed prism surface and provided a quantitative means of determining the redox transitions that were occurring. IR and visible redox difference spectra of iron-sulfur protein/cytochrome c(1), heme b(H), and heme b(L) were separated by selective reduction and/or oxidation that extends published data on the homologous bacterial enzyme. Several bands could be tentatively assigned to redox-sensitive modes of hemes and ubiquinone and changes in the surrounding protein by comparison with available data for bacterial bc(1) complex, other related heme proteins, and model compounds. Some tentative assignments of further signals to specific amino acids are made on the basis of known crystal structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号