首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2980篇
  免费   195篇
  国内免费   1篇
  3176篇
  2022年   27篇
  2021年   20篇
  2020年   15篇
  2019年   20篇
  2018年   24篇
  2017年   27篇
  2016年   39篇
  2015年   66篇
  2014年   69篇
  2013年   160篇
  2012年   132篇
  2011年   139篇
  2010年   97篇
  2009年   72篇
  2008年   123篇
  2007年   127篇
  2006年   151篇
  2005年   111篇
  2004年   141篇
  2003年   168篇
  2002年   157篇
  2001年   123篇
  2000年   111篇
  1999年   97篇
  1998年   49篇
  1997年   35篇
  1996年   28篇
  1995年   26篇
  1994年   34篇
  1993年   24篇
  1992年   61篇
  1991年   77篇
  1990年   66篇
  1989年   70篇
  1988年   38篇
  1987年   56篇
  1986年   38篇
  1985年   39篇
  1984年   27篇
  1983年   15篇
  1982年   24篇
  1981年   21篇
  1980年   22篇
  1979年   22篇
  1978年   17篇
  1977年   18篇
  1976年   26篇
  1973年   18篇
  1971年   14篇
  1968年   16篇
排序方式: 共有3176条查询结果,搜索用时 15 毫秒
231.
Influenza A viruses attach to alpha-sialosides on the target cell surface by their hemagglutinins, which strictly recognize the difference in sialic acid-galactose linkage. Why does avian virus H3 subtype bind to avian receptor Neu5Ac(alpha2-3)Gal stronger than to human receptor Neu5Ac(alpha2-6)Gal? Why does avian H3 mutated Gln226 to Leu preferentially bind to human receptor? In this paper, we theoretically answer the questions by molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. The binding energy between avian H3 and avian receptor is 8.2kcal/mol larger than that of the avian H3-human receptor complex estimated at the FMO-HF/STO-3G level, which is a reason that avian H3 binds to avian receptor stronger than to human receptor. Avian Leu226 H3 clashes to Gal unit on the avian receptor to quite decrease its binding affinity. In contrast, Gal unit on the human receptor forms intermolecular hydrophobic interaction with avian Leu226 H3 to afford moderate binding affinity.  相似文献   
232.
Defective interfering (DI) influenza viruses carry a large deletion in a gene segment that interferes with the replication of infectious virus; thus, such viruses have potential for antiviral therapy. However, because DI viruses cannot replicate autonomously without the aid of an infectious helper virus, clonal DI virus stocks that are not contaminated with helper virus have not yet been generated. To overcome this problem, we used reverse genetics to generate a clonal DI virus with a PB2 DI gene, amplified the clonal DI virus using a cell line stably expressing the PB2 protein, and confirmed its ability to interfere with infectious virus replication in vitro. Thus, our approach is suitable for obtaining purely clonal DI viruses, will contribute to the understanding of DI virus interference mechanisms and can be used to develop DI virus‐based antivirals.  相似文献   
233.
Modeling studies of a furo[2,3-d]pyrimidine GSK-3 hit compound 1 superimposed onto the X-ray crystal structure of a legacy pyrazolo[3,4-c]pyridazine GSK-3 inhibitor 2 led to the identification of 4-acylamino-6-arylfuro[2,3-d]pyrimidine template 3. Synthesis of analogues based on template 3 has resulted in a number of potent and selective GSK-3beta inhibitors. The most potent and selective compound was the m-pyridyl analogue 24.  相似文献   
234.
For the purpose of clarifying the mechanism of plaque formation in HeLa cell cultures by coxsackievirus A9, which does not show definite CPE in fluid cultures, we investigated the growth pattern of the virus in HeLa cells, comparing plaque (HeLA)-forming and non-plaque (HeLa)-forming viruses. It was revealed that the yield of both viruses per cell was nearly the same, but non- plaque (HeLa)-forming virus was far less efficient in infecting HeLa cells. Dextran sulfate was effective in releasing more virus from cells, when HeLa cell cultures were infected with plaque (HeLa)-forming virus, but not in cultures infected with non-plaque (HeLa)-forming virus. From these experimental results, the mechanism by which plaques are formed in HeLa cell cultures by coxsackievirus A9 was discussed.  相似文献   
235.
 This report describes the distribution and localization of thrombomodulin (TM) in the rat eye by light and electron microscopic immunocytochemistry. In addition to the endothelium of the entire vasculature, TM was found on the non-vascular structures lining the cavities of the posterior and anterior chambers and the limbus. TM was localized on the basal, lateral, and apical plasma membranes of the inner and outer ciliary epithelium, and the posterior iris epithelium in which there was no polarized expression of TM. In the anterior chamber, TM was localized on the luminal surface of the corneal endothelium, but was negative on the anterior border layer of the iris, which is composed of a discontinuous layer of fibroblasts and collagen fibers. Thus, TM was present at sites of cell-to-cell contact. TM was also present on the endothelia of the trabecular meshwork and the Schlemm’s canal in the limbus. TM was localized not only on the luminal plasma membrane, but also on the cytoplasmic giant vacuoles in the endothelial cells of the Schlemm’s canal. These findings extend the importance of anticoagulant mechanisms to the systems of secretion, circulation, and drainage of the aqueous humor. Accepted: 18 March 1997  相似文献   
236.
Nck-interacting kinase (NIK)-related kinase (NRK)/NIK-like embryo-specific kinase (NESK) is a protein kinase that belongs to the germinal center kinase family, and activates the c-Jun N-terminal kinase (JNK) signaling pathway. In this study, we examined the effect of NRK/NESK on actin cytoskeletal organization. Overexpression of NRK/NESK in COS7 cells induced accumulation of polymerized actin at the perinuclear. Phosphorylation of cofilin, an actin-depolymerizing factor, was increased in NRK/NESK-expressing HEK 293T cells. In addition, in vitro phosphorylation of cofilin was observed on NRK/NESK immunoprecipitates from HEK 293T cells expressing the kinase domain of NRK/NESK. The cofilin phosphorylation occurred at the serine residue of position 3 (Ser-3). Since the phosphorylation at Ser-3 inactivates the actin-depolymerizing activity of cofilin, these results suggest that NRK/NESK induces actin polymerization through cofilin phosphorylation. The cofilin phosphorylation did not appear to be mediated through activation of LIM-kinasel, a cofilin-phosphorylating kinase, or through the activation of JNK. Thus, cofilin is likely to be a direct substrate of NRK/NESK. NRK/NESK is predominantly expressed in skeletal muscle during the late stages of mouse embryogenesis. Thus, NRK/NESK may be involved in the regulation of actin cytoskeletal organization in skeletal muscle cells through cofilin phosphorylation.  相似文献   
237.
piRNA (PIWI-interacting RNA) is a germ cell–specific small RNA in which biogenesis PIWI (P-element wimpy testis) family proteins play crucial roles. MILI (mouse Piwi-like), one of the three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably through the piRNA, and spermatogenesis. The biogenesis of piRNA has been divided into primary and secondary processing pathways; in both of these MILI is involved in mice. To analyze the molecular function of MILI in piRNA biogenesis, we utilized germline stem (GS) cells, which are derived from testicular stem cells and possess a spermatogonial phenotype. We established MILI-null GS cell lines and their revertant, MILI-rescued GS cells, by introducing the Mili gene with Sendai virus vector. Comparison of wild-type, MILI-null, and MILI-rescued GS cells revealed that GS cells were quite useful for analyzing the molecular mechanisms of piRNA production, especially the primary processing pathway. We found that glycerol-3-phosphate acyltransferase 2 (GPAT2), a mitochondrial outer membrane protein for lysophosphatidic acid, bound to MILI using the cells and that gene knockdown of GPAT2 brought about impaired piRNA production in GS cells. GPAT2 is not only one of the MILI bound proteins but also a protein essential for primary piRNA biogenesis.  相似文献   
238.
 A yeast artificial chromosome (YAC) contig from the C57BL/6 (H2 b ) mouse was created from the major histocompatibility complex (Mhc, H2 in mouse) class Ib subregion, H2-M. It spans approximately 1.2 megabase (Mb) pairs and unites the previous >1.5-Mb YAC contigs (Jones et al. 1995) into a single contig, which includes 21 Mhc class I genes distal to H2-T1. A bacterial artificial chromosome (BAC) contig from the 129 (H2 bc ) mouse, spanning approximately 600 kilobases, was also built from Znf173 (Afp, a gene for acid finger protein), through Tctex5 (t-complex testis expressed-5) and Mog (myelin oligodendrocyte glycoprotein), to H2-M2. Twenty-four sequence-tagged site (STS) markers were newly developed, and 35 markers were mapped in the YAC/BAC contigs, which define the marker order as Cen –Znf173Tctex5 – MogD17Tu42D17Mit232H2-M3D17Leh525H2-M2– Tel. The gene order of Znf173 – Tctex5 – Mog – D17Tu42 is conserved between mouse and human, showing that the middle H2-M region corresponds to the subregion of the human Mhc surrounding HLA-A. Received: 25 July 1997 / Revised: 10 September 1997  相似文献   
239.
Ciliates such as Tetrahymena thermophila have two distinct nuclei within one cell: the micronucleus that undergoes mitosis and meiosis and the macronucleus that undergoes amitosis, a type of nuclear division that does not involve a bipolar spindle, but still relies on intranuclear microtubules. Ciliates provide an opportunity for the discovery of factors that specifically contribute to chromosome segregation based on a bipolar spindle, by identification of factors that affect the micronuclear but not the macronuclear division. Kinesin‐14 is a conserved minus‐end directed microtubule motor that cross‐links microtubules and contributes to the bipolar spindle sizing and organization. Here, we use homologous DNA recombination to knock out genes that encode kinesin‐14 orthologues (KIN141, KIN142) in Tetrahymena. A loss of KIN141 led to severe defects in the chromosome segregation during both mitosis and meiosis but did not affect amitosis. A loss of KIN141 altered the shape of the meiotic spindle in a way consistent with the KIN141's contribution to the organization of the spindle poles. EGFP‐tagged KIN141 preferentially accumulated at the spindle poles during the meiotic prophase and metaphase I. Thus, in ciliates, kinesin‐14 is important for nuclear divisions that involve a bipolar spindle.  相似文献   
240.
Males use courtship signals to inform a conspecific female of their presence and/or quality, or, alternatively, to ‘cheat’ females by imitating the cues of a prey or predator. These signals have the single function of advertising for mating. Here, we show the dual functions of the courtship song in the yellow peach moth, Conogethes punctiferalis, whose males generate a series of short pulses and a subsequent long pulse in a song bout. Repulsive short pulses mimic the echolocation calls of sympatric horseshoe bats and disrupt the approach of male rivals to a female. The attractive long pulse does not mimic bat calls and specifically induces mate acceptance in the female, who raises her wings to facilitate copulation. These results demonstrate that moths can evolve both attractive acoustic signals and repulsive ones from cues that were originally used to identify predators and non-predators, because the bat-like sounds disrupt rivals, and also support a hypothesis of signal evolution via receiver bias in moth acoustic communication that was driven by the initial evolution of hearing to perceive echolocating bat predators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号