首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3157篇
  免费   206篇
  3363篇
  2023年   13篇
  2022年   25篇
  2021年   46篇
  2020年   23篇
  2019年   41篇
  2018年   48篇
  2017年   36篇
  2016年   64篇
  2015年   98篇
  2014年   89篇
  2013年   188篇
  2012年   199篇
  2011年   191篇
  2010年   114篇
  2009年   124篇
  2008年   173篇
  2007年   149篇
  2006年   167篇
  2005年   176篇
  2004年   169篇
  2003年   142篇
  2002年   142篇
  2001年   82篇
  2000年   83篇
  1999年   84篇
  1998年   34篇
  1997年   37篇
  1996年   22篇
  1995年   18篇
  1994年   25篇
  1993年   33篇
  1992年   57篇
  1991年   53篇
  1990年   35篇
  1989年   26篇
  1988年   44篇
  1987年   23篇
  1986年   24篇
  1985年   36篇
  1984年   31篇
  1983年   21篇
  1982年   15篇
  1981年   19篇
  1980年   13篇
  1979年   13篇
  1978年   11篇
  1975年   15篇
  1972年   12篇
  1969年   12篇
  1968年   13篇
排序方式: 共有3363条查询结果,搜索用时 0 毫秒
61.
62.
We developed a bispyrene-conjugated 2 ′-O-methyloligoribonucleotide as an RNA-specific RNA-probe. The probe hybridized with the complementary RNA, greatly enhancing fluorescence and discriminating RNA from DNA. The assay was carried out in homogeneous aqueous media without removing the unbound probe from the detection solution. This homogeneous fluorescence assay also discriminated mismatch sequences in the target RNA. These pyrene probes could possess high potential to detect RNA in biological specimens simply.  相似文献   
63.
64.
Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn‐binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn‐binding proteins bind to Fn to form a bridge to α5β1‐integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn‐binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn‐binding proteins have received focus as non‐M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn‐binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates.  相似文献   
65.
Follicular populations were investigated in female F344/N rats to better understand the aging process of the rat ovary. Ovaries dissected at various ages (spanning 1–36 months old) were submitted for histological examination. The total number of primordial, growing (primary and secondary), tertiary, and atretic follicles as well as corpora lutea (CL) were counted in hematoxylin–eosin- and azocarmine–aniline-blue-stained ovarian sections. The number of healthy follicles including primordial, growing and tertiary follicles decreased rapidly between the first and third months and gradually thereafter. CL were found in 3-month-old rats, and their number remained unchanged until 18 months of age, at which point it decreased. The number of atretic follicles started to increase in rats older than 18 months, which corresponded to the cessation of estrous cyclicity. Several healthy follicles and CL were observed even in 36-month-old rats.  相似文献   
66.
The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1 −/− MT −/− ZnT4 −/− cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1 −/− MT −/− ZnT4 −/− cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1 −/− MT −/− ZnT4 −/− cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.  相似文献   
67.
The self-incompatibility (SI) response of the Brassicaceae is mediated by allele-specific interaction between the stigma-localized S-locus receptor kinase (SRK) and its ligand, the pollen coat-localized S-locus cysteine-rich protein (SCR). Based on work in Brassica spp., the thioredoxin h-like proteins THL1 and THL2, which interact with SRK, have been proposed to function as oxidoreductases that negatively regulate SRK catalytic activity. By preventing the spontaneous activation of SRK in the absence of SCR ligand, these thioredoxins are thought to be essential for the success of cross pollinations in self-incompatible plants. However, the in planta role of thioredoxins in the regulation of SI signaling has not been conclusively demonstrated. Here, we addressed this issue using Arabidopsis thaliana plants transformed with the SRKb-SCRb gene pair isolated from self-incompatible Arabidopsis lyrata. These plants express an intense SI response, allowing us to exploit the extensive tools and resources available in A. thaliana for analysis of SI signaling. To test the hypothesis that SRK is redox regulated by thioredoxin h, we expressed a mutant form of SRKb lacking a transmembrane-localized cysteine residue thought to be essential for the SRK-thioredoxin h interaction. We also analyzed transfer DNA insertion mutants in the A. thaliana orthologs of THL1 and THL2. In neither case did we observe an effect on the pollination responses of SRKb-expressing stigmas toward incompatible or compatible pollen. Our results are consistent with the conclusion that, contrary to their proposed role, thioredoxin h proteins are not required to prevent the spontaneous activation of SRK in the A. thaliana stigma.Many flowering plants possess self-incompatibility (SI), a genetic system that promotes outcrossing by preventing self-fertilization. In the Brassicaceae family, the SI response is controlled by haplotypes of the S locus, each of which contains two genes that encode highly polymorphic proteins, the S-locus receptor kinase (SRK), which is a plasma membrane resident single-pass transmembrane Ser/Thr receptor kinase displayed at the surface of stigma epidermal cells (Stein et al., 1991; Takasaki et al., 2000), and the S-locus Cys-rich protein (SCR), which is the pollen coat-localized ligand for SRK (Schopfer et al., 1999; Kachroo et al., 2001; Takayama et al., 2001). SRK and SCR exhibit allele-specific interactions, whereby only SRK and SCR encoded by the same S-locus haplotype interact. In a self-pollination, the binding of this “self” pollen-borne SCR to the extracellular domain of SRK activates the SRK kinase, thereby triggering a cellular response in stigma epidermal cells that causes inhibition of pollen germination and tube penetration into the stigma epidermal cell wall (for review, see Tantikanjana et al., 2010).Tight regulation of SRK kinase activity and its signaling cascade is critical for productive pollen-stigma interactions because constitutive (i.e. SCR-independent) activity of the receptor is expected to result in sterile stigmas that reject both compatible and incompatible pollen. In the classical view of ligand-activated receptor kinases, the receptor occurs as catalytically inactive monomers in the absence of ligand and only becomes activated upon ligand-induced dimerization (for review, see Lemmon and Schlessinger, 2010). However, some receptor kinases in both animals (Chan et al., 2000; Ehrlich et al., 2011) and plants (Giranton et al., 2000; Wang et al., 2005, 2008; Shimizu et al., 2010; Bücherl et al., 2013) form catalytically inactive dimers or oligomers in the absence of ligand, with receptor activation presumably resulting from ligand-induced higher order oligomerization or conformational changes (Lemmon and Schlessinger, 2010). Similar to the latter receptors, SRK forms oligomers in unpollinated stigmas, i.e. in the absence of SCR (Giranton et al., 2000), at least partly via ligand-independent dimerization domains located within the SRK extracellular domain (Naithani et al., 2007). It has been proposed that these ligand-independent SRK oligomers are maintained in an inactive state by thioredoxins, the ubiquitous small oxidoreductases that reduce disulfide bridges in proteins (Buchanan and Balmer, 2005). This hypothesis is supported by the following observations: (1) two Brassica napus thioredoxins, the Thioredoxin H-Like proteins THL1 and THL2, were identified as SRK interactors in a yeast (Saccharomyces cerevisiae) two-hybrid screen that used the B. napus SRK910 kinase domain as bait (Bower et al., 1996); (2) when purified from pistils or insect cells, the Brassica oleracea SRK3 variant was found to exhibit constitutive autophosphorylation activity in vitro, and this activity was inhibited by Escherichia coli-expressed THL1 proteins and was restored by addition of pollen coat proteins containing self but not of pollen coat proteins containing nonself SCR (Cabrillac et al., 2001); (3) the catalytic activity of THL1 was required for its inhibition of SRK3 autophosphorylation activity in vitro (Cabrillac et al., 2001); and (4) antisense suppression of THL1/THL2 gene expression in the stigmas of a self-compatible B. napus strain reportedly produced a low-level constitutive incompatibility (Haffani et al., 2004), as might be expected if the THL1/THL2 proteins prevent the spontaneous activation of SRK-mediated signaling in stigmas.These observations notwithstanding, the in planta role of thioredoxin h proteins as negative regulators of SRK activity has not been conclusively demonstrated. To date, this proposed function has only been evaluated in a self-compatible strain of B. napus (Haffani et al., 2004). Consequently, it is not known if the proposed inhibitory effect of these thioredoxins on SRK catalytic activity is manifested in self-incompatible stigmas and if it applies to all SRK variants, be they derived from Brassica spp. or other self-incompatible species of the Brassicaceae such as Arabidopsis lyrata.In this study, we tested the in planta role of thioredoxin h proteins in the regulation of SI signaling using a transgenic self-incompatible Arabidopsis thaliana model that we generated by transforming A. thaliana with the SRKb-SCRb gene pair isolated from the Sb haplotype of self-incompatible A. lyrata (Kusaba et al., 2001; Nasrallah et al., 2002, 2004). We had previously shown that the stigmas of A. thaliana SRKb-SCRb transformants can exhibit an SI response that is as robust as the SI response observed in naturally self-incompatible A. lyrata, demonstrating that A. thaliana, which harbors nonfunctional S-locus haplotypes (Kusaba et al., 2001; Sherman-Broyles et al., 2007; Shimizu et al., 2008; Boggs et al., 2009c), has nevertheless retained all other factors required for SI. In view of the availability in A. thaliana of a highly efficient transformation method and numerous genetic resources, the A. thaliana SRK-SCR transgenic model has enabled the use of experimental approaches that are difficult or impossible to implement in Brassica species and has thus proven to be an invaluable platform for in planta analysis of SRK and SI signaling (Liu et al., 2007; Boggs et al., 2009a, 2009b; Tantikanjana et al., 2009; Tantikanjana and Nasrallah, 2012).We therefore used this transgenic A. thaliana self-incompatible model to determine if abolishing the proposed SRK-thioredoxin h interaction or eliminating expression of the major thioredoxin h proteins expressed in stigmas would affect the outcome of self- or cross pollination. To this end, we expressed a mutant form of SRKb that lacked the Cys residue previously shown to be required for the interaction of SRK with THLs (Mazzurco et al., 2001), and we analyzed plants carrying knockout insertional mutations in thioredoxin h genes. Our results are inconsistent with the proposed role of thioredoxin h proteins as negative regulators of SRK catalytic activity and SI signaling.  相似文献   
68.
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy.  相似文献   
69.
70.
We previously isolated two α-l-arabinofuranosidases (ABFs), termed AFQ1 and AFS1, from the culture filtrate of Penicillium chrysogenum 31B. afq1 and afs1 complementary DNAs encoding AFQ1 and AFS1 were isolated by in vitro cloning. The deduced amino acid sequences of AFQ1 and AFS1 are highly similar to those of Penicillium purpurogenum ABF 2 and ABF 1, respectively, which belong to glycoside hydrolase (GH) families 51 and 54, respectively. Pfam analysis revealed an “Alpha-L-AF_C” domain in AFQ1 and “ArabFuran-catal” and “AbfB” domains in AFS1. Semi-quantitative RT-PCR analysis indicated that the afq1 gene was constitutively expressed in P. chrysogenum 31B at a low level, although the expression was slightly induced with arabinose, arabinitol, arabinan, and arabinoxylan. In contrast, expression of the afs1 gene was strongly expressed by the above four carbohydrates and less strongly induced by galactan. Recombinant enzymes (rAFQ1 and rAFS1) expressed in Escherichia coli were active against both p-nitrophenyl α-l-arabinofuranoside and polysaccharides with different specificities. 1H-NMR analysis revealed that rAFS1 degraded arabinofuranosyl side chains that were both singly and doubly linked to the backbones of arabinoxylan and l-arabinan. On the other hand, rAFQ1 preferentially released arabinose linked to C-3 of single-substituted xylose or arabinose residues in the two polysaccharides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号