首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   67篇
  738篇
  2021年   4篇
  2017年   8篇
  2016年   9篇
  2015年   11篇
  2014年   17篇
  2013年   42篇
  2012年   20篇
  2011年   36篇
  2010年   12篇
  2009年   15篇
  2008年   32篇
  2007年   33篇
  2006年   26篇
  2005年   32篇
  2004年   34篇
  2003年   34篇
  2002年   37篇
  2001年   43篇
  2000年   27篇
  1999年   21篇
  1998年   15篇
  1997年   6篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   21篇
  1991年   23篇
  1990年   12篇
  1989年   13篇
  1988年   12篇
  1987年   11篇
  1986年   16篇
  1985年   8篇
  1984年   12篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   10篇
  1979年   4篇
  1978年   9篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
排序方式: 共有738条查询结果,搜索用时 15 毫秒
71.
We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities.  相似文献   
72.
Summary Four enhanced carbonyl carbon resonances were observed whenStreptomyces subtilisin inhibitor (SSI) was labeled by incorporating specifically labeled [1-13C]Cys. The13C signals were assigned by the15N,13C double-labeling method along with site-specific mutagenesis. Changes in the spectrum of the labeled protein ([C]SSI) were induced by reducing the disulfide bonds with various amounts of dithiothreitol (DTT). The results indicate that, in the absence of denaturant, the Cys71-Cys101 disulfide bond of each SSI subunit can be reduced selectively. This disulfide bond, which is in the vicinity of the reactive site scissile bond Met73-Val74, is more accessible to solvent than the other disulfide bond. Cys35-Cys50, which is embedded in the interior of SSI. This half-reduced SSI had 65% of the inhibitory activity of native SSI and maintained a conformation similar to that of the fully oxidized SSI. Reoxidation of the half reduced-folded SSI by air regenerates fully active SSI which is indistinguishable with intact SSI by NMR. In the presence of 3 M guanidine hydrochloride (GuHCl), however, both disulfide bonds of each SSI subunit were readily reduced by DTT. The fully reduced-unfolded SSI spontaneously refolded into a native-like structure (fully reduced-folded state), as evidenced by the Cys carbonyl carbon chemical shifts, upon removing GuHCl and DTT from the reaction mixture. The time course of disulfide bond regeneration from this state by air oxidation was monitored by following the NMR spectral changes and the results indicated that the disulfide bond between Cys71 and Cys101 regenerates at a much faster rate than that between Cys35 and Cys50.Nomenclature of the various states of SSI that are observed in the present study Fully oxidized-folded native or intact (without GuHCl or DTT) - half reduced-folded (Cys71-Cys101 reduced; DTT without GuHCl) - inversely half reduced-folded (Cys35-Cys50 reduced; a reoxidation intermediate from fully reduced-folded state) - fully reduced-unfolded (reduced by DTT in the presence of GuHCl) - fully reduced-folded (an intermediate state obtained by removing DTT and GuHCl from the fully reduced-unfolded SSI reaction mixture)  相似文献   
73.
Phosphoprotein phosphatase prepared from bovine cardiac muscle was used to study the roles of axonemal phosphoproteins in the flagellar motility of sea urchin spermatozoa. When isolated axonemes were incubated with cyclic AMP-dependent protein kinase, gamma-[32P]ATP and cyclic AMP, more than 15 polypeptides were phosphorylated. Most were dephosphorylated by treatment with phosphoprotein phosphatase. When Triton models of sea urchin spermatozoa were treated with phosphoprotein phosphatase followed by an addition of ATP, the flagellar motility of the models was drastically reduced in comparison with that of the untreated models. The motility of the phosphatase-treated Triton models was partially restored by an addition of cyclic AMP and cyclic AMP-dependent protein kinase. These data give strong support to the idea that the motility of eukaryotic flagella is controlled by a protein phosphorylation-dephosphorylation system.  相似文献   
74.
Summary Enzymatic DNA amplification and direct DNA sequencing were used to detect a mutation in the tyrosinase gene of an albino patient. Single-base change could be detected by direct sequencing. This base change (G to A) is thought to result in an amino acid change (Arg to Gln) in tyrosinase of the patient.  相似文献   
75.
Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice.  相似文献   
76.
Rapid measurement of phytate in raw soymilk by mid-infrared spectroscopy   总被引:1,自引:0,他引:1  
The phytate content in soymilk is known to affect tofu curdling. A rapid measurement of phytate from a water extract of soybean (raw soymilk) in an early stage of tofu processing was investigated using mid-infrared spectroscopy (IR) with an ATR accessory. IR absorption of phytate was observed from 1200 cm-1 to 900 cm-1, and saccharide and protein in the extract also had IR absorption in the same region. In order to separate phytate from other components, the phytate was precipitated completely by the addition of calcium under alkaline condition (pH 11.5). The precipitate was dissolved in citrate buffer (pH 6.0) and then used for IR measurement. The absorbance at 1070 cm-1 correlated well with the phytate content of the soymilk. The measurement of phytate in raw soymilk can be done rapidly by FT-IR measurement with an ATR accessory and gives reproducible values, which can be used for the measurement of phytate content in various soybeans for tofu making.  相似文献   
77.
The role of protein phosphatases in the regulation of insulin release from rat pancreatic islets was studied with protein phosphatase inhibitors, okadaic acid and calyculin A. Okadaic acid inhibited glucose- and glyceraldehyde-induced insulin release dose-dependently and also inhibited the potentiation of glucose-induced release either by adding forskolin, an activator of adenylate cyclase or by increasing K+ concentration to 25 mM. At a non-stimulatory concentration of 3 mM glucose, a high concentration (2 microM) of okadaic acid inhibited insulin release induced by high K+ or 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, but a low concentration (1 microM) of okadaic acid did not significantly inhibit TPA-induced insulin release. Calyculin A also inhibited glucose-induced insulin release, and the effect was greater than that of okadaic acid. The data suggest that protein phosphatases may play an important role in the regulation of insulin release.  相似文献   
78.
In order to study the effect of glycosylation on its biological activities, and to develop TNFα with less deleterious effects, recombinant human TNFα was chemically coupled with N-acetylneuraminic acid (NeuAc). NeuAc with C9 spacer was coupled to TNFα by acyl azide method. Two glycosylated TNFαs, designated L NeuAc-TNFα and H NeuAc-TNFα, were purified by anion-exchange chromatography. NeuAc coupling to TNFα was confirmed by lectin blotting. Average number of carbohydrate molecules introduced per molecule of L NeuAc-TNFα and H NeuAc-TNFα were estimated to be 1.0 and 1.5, respectively. We examined a variety of TNFα activities in vitro, including antiproliferative or cytotoxic activities to tumor cells, proliferative effect on fibroblast cells, stimulatory effects on IL-6 production by melanoma cells and NF-κB activation in hepatoma cells. L NeuAc-TNFα and H NeuAc-TNFα exhibited reduced activities about 1/3 and 1/10 as compared to native TNFα in all the activities performed in vitro.  相似文献   
79.
Heterogeneity of the rDNA ITS region in Pythium helicoides and the phylogenetic relationship between P. helicoides and closely related species were investigated. In PCR-RFLP analysis of the rDNA ITS region of six P. helicoides isolates investigated, including the type culture, intraspecific variation was found at the HhaI site. The total length of fragments was longer than before cutting, indicating sequence heterogeneity within isolates. Digestion of the cloned rDNA ITS region derived from seven isolates with HhaI revealed polymorphisms among and within single zoospore isolates, and variability of the region was also present among the clones derived from the same isolate. To test whether the rDNA ITS region of closely related species and other regions in the genome of P. helicoides are also variable, the rDNA ITS region of P. ultimum and the cytochrome oxydase II (cox II) gene encoded in mitochondria were sequenced. P. ultimum had little variation in the rDNA ITS region. The cox II gene sequences of both species revealed only a low intraspecific variability and no intra-isolate variation. In the phylogenic tree based on the rDNA ITS sequences, all clones of P. helicoides formed one large clade that was distinct from the clades comprising morphologically similar species, such as P. oedochilum and P. ostracodes, and was closely related to P. chamaehyphon rather than the other species.  相似文献   
80.
We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382–397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na+ current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000–18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号