首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   67篇
  2021年   4篇
  2017年   8篇
  2016年   9篇
  2015年   11篇
  2014年   17篇
  2013年   42篇
  2012年   20篇
  2011年   36篇
  2010年   12篇
  2009年   15篇
  2008年   32篇
  2007年   33篇
  2006年   26篇
  2005年   32篇
  2004年   34篇
  2003年   34篇
  2002年   37篇
  2001年   43篇
  2000年   27篇
  1999年   21篇
  1998年   15篇
  1997年   6篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   21篇
  1991年   23篇
  1990年   12篇
  1989年   13篇
  1988年   12篇
  1987年   11篇
  1986年   16篇
  1985年   8篇
  1984年   12篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   10篇
  1979年   4篇
  1978年   9篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
排序方式: 共有738条查询结果,搜索用时 31 毫秒
71.
Rotational diffusion properties have been derived for the DNA dodecamer d(CGCGAATTCGCG)2 from 13C R1 and R1 measurements on the C1, C3, and C4 carbons in samples uniformly enriched in 13C. The narrow range of C-H bond vector orientations relative to the DNA axis make the analysis particularly sensitive to small structural deviations. As a result, the R1/R1 ratios are found to fit poorly to the crystal structures of this dodecamer, but well to a recent solution NMR structure, determined in liquid crystalline media, even though globally the structures are quite similar. A fit of the R1/R1 ratios to the solution structure is optimal for an axially symmetric rotational diffusion model, with a diffusion anisotropy, D||/D, of 2.1±0.4, and an overall rotational correlation time, (2D||+4D)–1, of 3.35 ns at 35 °C in D2O, in excellent agreement with values obtained from hydrodynamic modeling.  相似文献   
72.
The ribonuclease MC1 (RNase MC1) from seeds of bitter gourd (Momordica charantia) consists of 190 amino acids and belongs to the RNase T2 family, including fungal RNases typified by RNase Rh from Rhizopus niveus. We expressed RNase MC1 in Escherichia coli cells and made use of site-directed mutagenesis to identify essential amino acid residues for catalytic activity. Mutations of His34 and His88 to Ala completely abolished the enzymatic activity, and considerable decreases in the enzymatic activity were observed in cases of mutations of His83, Glu84, and Lys87, when yeast RNA was used as a substrate. Kinetic parameters for the enzymatic activity of the mutants of His83, Glu84, and Lys87 were analyzed using a dinucleoside monophosphate CpU. Km values for the mutants were approximately like that for wild-type, while k(cat) values were decreased by about 6 to 25-fold. These results suggest that His34, His83, Glu84, Lys87, and His88 in RNase MC1 may be involved in the catalytic function. These observation suggests that RNase MC1 from a plant catalyzes RNA degradation in a similar manner to that of fungal RNases.  相似文献   
73.
74.
Pmp47 of the methylotrophic yeast Candida boidinii belongs to a mitochondrial family of solute transporters and is localized in peroxisomal membranes. Its human homolog, Pmp34, is also known. In this study, we characterized the role of Pmp47 in fatty acid metabolism and peroxisome proliferation using the PMP47-deleted strain of C. boidinii (strain pmp47Delta). The wild-type strain grew well on a middle-chain fatty acid, laureate, as the single carbon source, and mild peroxisome proliferation was observed during its growth. The pmp47Delta strain could not grow on laureate but could grow on long-chain fatty acids including palmitate, myristate, and oleate. The levels of laureate oxidation activity in intact cells and in semi-permeabilized cells of strain pmp47Delta were lower than the respective level in the wild-type strain, although the level of laureate oxidation activity in the cell lysate and the level of lauroyl-CoA oxidation in semi-permeabilized cells of strain pmp47Delta were indistinguishable from the respective level in the wild-type strain. When lauroyl-CoA was provided in the cytosol of strain pmp47Delta through expression of Saccharomyces cerevisiae Faa2p (lauroyl-CoA synthetase) in which its peroxisome targeting signal was deleted, the growth of strain pmp47Delta on laureate was recovered to the level of growth of the wild-type strain. Laureate is converted to its CoA form in peroxisomes by the action of lauroyl-CoA synthetase. These results suggested that Pmp47 is involved in the transport of a small molecule (possibly ATP) required in the conversion of laureate to its CoA form in peroxisomes and that the absence of Pmp47 causes impairment of laureate metabolism, which results in the inability of pmp47Delta cells to grow on laureate. In addition, Pmp47 may be involved in peroxisome proliferation, because the pmp47Delta strain contained a reduced number of peroxisomes, as judged from the fluorescence analysis of cells expressing green fluorescent protein tagged with the peroxisome targeting signal 1 (GFP-AKL).  相似文献   
75.
The temperature-sensitive penicillin tolerance response previously reported in amino acid-deprived Escherichia coli (W. Kusser and E. E. Ishiguro, J. Bacteriol. 169:2310–2312, 1987) was not due to the induction of the heat shock response resulting from a temperature upshift and was therefore unrelated to the findings of another report (J. K. Powell and K. D. Young, J. Bacteriol. 173:4021–4026, 1991) indicating a positive correlation between the expression of heat shock proteins and penicillin tolerance. The thermosensitive event occurred in the lysis induction stage.  相似文献   
76.
The three-dimensional solution structure of recombinant bovine myristoylated recoverin in the Ca2+-free state has been refined using an array of isotope-assisted multidimensional heteronuclear NMR techniques. In some experiments, the myristoyl group covalently attached to the protein N-terminus was labeled with 13C and the protein was unlabeled or vice versa; in others, both were 13C-labeled. This differential labeling strategy was essential for structural refinement and can be applied to other acylated proteins. Stereospecific assignments of 41 pairs of -methylene protons and 48 methyl groups of valine and leucine were included in the structure refinement. The refined structure was constructed using a total of 3679 experimental NMR restraints, comprising 3242 approximate interproton distance restraints (including 153 between the myristoyl group and the polypeptide), 140 distance restraints for 70 backbone hydrogen bonds, and 297 torsion angle restraints. The atomic rms deviations about the averaged minimized coordinate positions for the secondary structure region of the N-terminal and C-terminal domains are 0.44 ± 0.07 and 0.55 ± 0.18 Å for backbone atoms, and 1.09 ± 0.07 and 1.10 ± 0.15 Å for all heavy atoms, respectively. The refined structure allows for a detailed analysis of the myristoyl binding pocket. The myristoyl group is in a slightly bent conformation: the average distance between C1 and C14 atoms of the myristoyl group is 14.6 Å. Hydrophobic residues Leu28, Trp31, and Tyr32 form a cluster that interacts with the front end of the myristoyl group (C1-C8), whereas residues Phe49, Phe56, Tyr86, Val87, and Leu90 interact with the tail end (C9-C14). The relatively deep hydrophobic pocket that binds the myristoyl group (C14:0) could also accommodate other naturally occurring acyl groups such as C12:0, C14:1, and C14:2 chains.  相似文献   
77.
Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions.  相似文献   
78.
We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities.  相似文献   
79.
In order to study the effect of glycosylation on its biological activities, and to develop TNFα with less deleterious effects, recombinant human TNFα was chemically coupled with N-acetylneuraminic acid (NeuAc). NeuAc with C9 spacer was coupled to TNFα by acyl azide method. Two glycosylated TNFαs, designated L NeuAc-TNFα and H NeuAc-TNFα, were purified by anion-exchange chromatography. NeuAc coupling to TNFα was confirmed by lectin blotting. Average number of carbohydrate molecules introduced per molecule of L NeuAc-TNFα and H NeuAc-TNFα were estimated to be 1.0 and 1.5, respectively. We examined a variety of TNFα activities in vitro, including antiproliferative or cytotoxic activities to tumor cells, proliferative effect on fibroblast cells, stimulatory effects on IL-6 production by melanoma cells and NF-κB activation in hepatoma cells. L NeuAc-TNFα and H NeuAc-TNFα exhibited reduced activities about 1/3 and 1/10 as compared to native TNFα in all the activities performed in vitro.  相似文献   
80.
Animal and yeast nucleolin function as global regulators of ribosome synthesis, and their expression is tightly linked to cell proliferation. Although Arabidopsis contains two genes for nucleolin, AtNuc-L1 is the predominant if not only form of the protein found in most tissues, and GFP-AtNuc-L1 fusion proteins were targeted to the nucleolus. Expression of AtNuc-L1 was strongly induced by sucrose or glucose but not by non-metabolizable mannitol or 2-deoxyglucose. Sucrose also caused enhanced expression of genes for subunits of C/D and H/ACA small nucleolar ribonucleoproteins, as well as a large number of genes for ribosomal proteins (RPs), suggesting that carbohydrate availability regulates de novo ribosome synthesis. In sugar-starved cells, induction of AtNuc-L1 occurred with 10 mM glucose, which seemed to be a prerequisite for resumption of growth. Disruption of AtNuc-L1 caused an increased steady-state level of pre-rRNA relative to mature 25S rRNA, and resulted in various phenotypes that overlap those reported for several RP gene mutants, including a reduced growth rate, prolonged lifetime, bushy growth, pointed leaf, and defective vascular patterns and pod development. These results suggest that the rate of ribosome synthesis in the meristem has a strong impact not only on the growth but also the structure of plants. The AtNuc-L1 disruptant exhibited significantly reduced sugar-induced expression of RP genes, suggesting that AtNuc-L1 is involved in the sugar-inducible expression of RP genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号