首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   991篇
  免费   67篇
  2022年   4篇
  2021年   11篇
  2020年   5篇
  2019年   8篇
  2018年   15篇
  2017年   15篇
  2016年   17篇
  2015年   28篇
  2014年   40篇
  2013年   46篇
  2012年   47篇
  2011年   61篇
  2010年   31篇
  2009年   16篇
  2008年   68篇
  2007年   47篇
  2006年   47篇
  2005年   41篇
  2004年   47篇
  2003年   58篇
  2002年   45篇
  2001年   26篇
  2000年   40篇
  1999年   26篇
  1998年   15篇
  1997年   22篇
  1996年   20篇
  1995年   13篇
  1994年   12篇
  1993年   2篇
  1992年   27篇
  1991年   16篇
  1990年   17篇
  1989年   20篇
  1988年   19篇
  1987年   14篇
  1986年   6篇
  1985年   7篇
  1984年   11篇
  1983年   13篇
  1982年   2篇
  1981年   2篇
  1976年   3篇
  1975年   3篇
  1974年   6篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1968年   3篇
  1931年   1篇
排序方式: 共有1058条查询结果,搜索用时 31 毫秒
991.
992.
In Saccharomyces cerevisiae, the glyoxylate cycle is controlled through the posttranslational regulation of its component enzymes, such as isocitrate lyase (ICL), which catalyzes the first unique step of the cycle. The ICL of S. cerevisiae (ScIcl1) is tagged for proteasomal degradation through ubiquitination by a multisubunit ubiquitin ligase (the glucose-induced degradation-deficient (GID) complex), whereas that of the pathogenic yeast Candida albicans (CaIcl1) escapes this process. However, the reason for the ubiquitin targeting specificity of the GID complex for ScIcl1 and not for CaIcl1 is unclear. To gain some insight into this, in this study, the crystal structures of apo ScIcl1 and CaIcl1 in complex with formate and the cryogenic electron microscopy structure of apo CaIcl1 were determined at a resolution of 2.3, 2.7, and 2.6 Å, respectively. A comparison of the various structures suggests that the orientation of N-terminal helix α1 in S. cerevisiae is likely key to repositioning of ubiquitination sites and contributes to the distinction found in C. albicans ubiquitin evasion mechanism. This finding gives us a better understanding of the molecular mechanism of ubiquitin-dependent ScIcl1 degradation and could serve as a theoretical basis for the research and development of anti-C. albicans drugs based on the concept of CaIcl1 ubiquitination.  相似文献   
993.
Magnaporthe oryzae chrysovirus 1 strain A (MoCV1‐A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, M. oryzae. We have previously reported that heterologous expression of MoCV1‐A ORF4 in Saccharomyces cerevisiae results in growth defects, a large central vacuole and other cytological changes. In this study, the effects of open reading frame (ORF) 4 expression in Cryptococcus neoformans, a human pathogenic fungus responsible for severe opportunistic infection, were investigated. Cells expressing the ORF4 gene in C. neoformans showed remarkably enlarged vacuoles, nuclear diffusion and a reduced growth rate. In addition, expression of ORF4 apparently suppressed formation of the capsule that surrounds the entire cell wall, which is one of the most important components of expression of virulence. After 5‐fluoroorotic acid treatment of ORF4‐expressing cells to remove the plasmid carrying the ORF4 gene, the resultant plasmid‐free cells recovered normal morphology and growth, indicating that heterologous expression of the MoCV1‐A ORF4 gene induces negative effects in C. neoformans. These data suggest that the ORF4 product is a candidate for a pharmaceutical protein to control disease caused by C. neoformans.  相似文献   
994.
995.
Insect wings are great resources for studying morphological diversities in nature as well as in fossil records. Among them, variation in wing venation is one of the most characteristic features of insect species. Venation is therefore, undeniably a key factor of species-specific functional traits of the wings; however, the mechanism underlying wing vein formation among insects largely remains unexplored. Our knowledge of the genetic basis of wing development is solely restricted to Drosophila melanogaster. A critical step in wing vein development in Drosophila is the activation of the decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signalling pathway during pupal stages. A key mechanism is the directional transport of Dpp from the longitudinal veins into the posterior crossvein by BMP-binding proteins, resulting in redistribution of Dpp that reflects wing vein patterns. Recent works on the sawfly Athalia rosae, of the order Hymenoptera, also suggested that the Dpp transport system is required to specify fore- and hindwing vein patterns. Given that Dpp redistribution via transport is likely to be a key mechanism for establishing wing vein patterns, this raises the interesting possibility that distinct wing vein patterns are generated, based on where Dpp is transported. Experimental evidence in Drosophila suggests that the direction of Dpp transport is regulated by prepatterned positional information. These observations lead to the postulation that Dpp generates diversified insect wing vein patterns through species-specific positional information of its directional transport. Extension of these observations in some winged insects will provide further insights into the mechanisms underlying diversified wing venation among insects.  相似文献   
996.
997.
Mitochondrial disorders have the highest incidence among congenital metabolic diseases, and are thought to occur at a rate of 1 in 5000 births. About 25% of the diseases diagnosed as mitochondrial disorders in the field of pediatrics have mitochondrial DNA abnormalities, while the rest occur due to defects in genes encoded in the nucleus. The most important function of the mitochondria is biosynthesis of ATP. Mitochondrial disorders are nearly synonymous with mitochondrial respiratory chain disorder, as respiratory chain complexes serve a central role in ATP biosynthesis. By next-generation sequencing of the exome, we analyzed 104 patients with mitochondrial respiratory chain disorders. The results of analysis to date were 18 patients with novel variants in genes previously reported to be disease-causing, and 27 patients with mutations in genes suggested to be associated in some way with mitochondria, and it is likely that they are new disease-causing genes in mitochondrial disorders. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   
998.
Elucidation of the functions of astrocytes is important for understanding of the pathogenic mechanism of various neurodegenerative diseases. Theophylline is a common drug for bronchial asthma and occasionally develops side-effects, such as acute encephalopathy; although the pathogenic mechanism of the side-effects is unknown. The lipopolysaccharide (LPS)-induced nitric oxide (NO) production is generally used for an index of the activation of astrocyte in vitro. In this study, in order to elucidate the effect of theophylline on the astrocytic functions, we examined the LPS-induced NO production and the expression of iNOS in cultured rat cortex astrocytes. Theophylline alone could not induce the NO production; however, NO production induced by LPS was enhanced by theophylline in a dose-dependent manner; and by isobutylmethylxanthine, a phosphodiesterase inhibitor. The theophylline enhancement of LPS-induced NO production was further increased by dibutyryl cyclic AMP, a membrane-permeable cAMP analog; and by forskolin, an adenylate cyclase activator. When the cells were preincubated with Rp-8-Br-cAMP, an inhibitor of protein kinase A, the theophylline enhancement of LPS-induced NO production was decreased. The extent of iNOS protein expression induced by LPS was also enhanced by theophylline. It is likely that phosphodiesterase inhibition is a major action mechanism for the theophylline enhancement of LPS-induced NO production in astrocytes. Theophylline-induced acute encephalopathy might be due to the hyper-activation of astrocytes via cAMP signaling to produce excess amount of NO.  相似文献   
999.
1000.
Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号