首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1461篇
  免费   104篇
  国内免费   2篇
  1567篇
  2023年   5篇
  2022年   6篇
  2021年   22篇
  2020年   10篇
  2019年   11篇
  2018年   10篇
  2017年   15篇
  2016年   27篇
  2015年   50篇
  2014年   56篇
  2013年   87篇
  2012年   82篇
  2011年   96篇
  2010年   57篇
  2009年   52篇
  2008年   94篇
  2007年   98篇
  2006年   103篇
  2005年   119篇
  2004年   98篇
  2003年   74篇
  2002年   100篇
  2001年   7篇
  2000年   11篇
  1999年   10篇
  1998年   20篇
  1997年   16篇
  1996年   13篇
  1995年   7篇
  1994年   16篇
  1993年   22篇
  1992年   11篇
  1991年   16篇
  1990年   7篇
  1989年   12篇
  1988年   7篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   9篇
  1982年   16篇
  1981年   8篇
  1980年   8篇
  1979年   7篇
  1978年   6篇
  1977年   9篇
  1975年   5篇
  1974年   5篇
  1973年   7篇
  1969年   4篇
排序方式: 共有1567条查询结果,搜索用时 15 毫秒
71.
Alix/AIP1 is a multifunctional adaptor protein involved in endocytosis, cell adhesion, and cell death. By yeast two-hybrid screening we identified a novel Alix/AIP1-interacting protein named Rab GTPase-activating protein-like protein (RabGAPLP). Interaction between Alix and RabGAPLP was confirmed by pull-down assays using fusion proteins of either glutathione-S-transferase (GST) or chitin-binding domain (CBD) and lysates of cultured mammalian cells expressing the respective proteins. Partial colocalization of FLAG-tagged RabGAPLP and green fluorescent protein (GFP)-fused Alix was observed at cell edges and filopodia-like structures by fluorescence confocal laser scanning microscopic analysis. The identity of RabGAPLP to merlin-associated protein (MAP), one of the interacting partners of neurofibromatosis type 2 (NF2) tumor suppressor gene product (merlin), implies cross-talk of membrane traffic and cell adhesion.  相似文献   
72.
We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.  相似文献   
73.
74.
The mode of action of Deltalac-acetogenins, strong inhibitors of bovine heart mitochondrial complex I, is different from that of traditional inhibitors such as rotenone and piericidin A [Murai, M., et al. (2007) Biochemistry 46 , 6409-6416]. As further exploration of these unique inhibitors might provide new insights into the terminal electron transfer step of complex I, we drastically modified the structure of Deltalac-acetogenins and characterized their inhibitory action. In particular, on the basis of structural similarity between the bis-THF and the piperazine rings, we here synthesized a series of piperazine derivatives. Some of the derivatives exhibited very potent inhibition at nanomolar levels. The hydrophobicity of the side chains and their balance were important structural factors for the inhibition, as is the case for the original Deltalac-acetogenins. However, unlike in the case of the original Deltalac-acetogenins, (i) the presence of two hydroxy groups is not crucial for the activity, (ii) the level of superoxide production induced by the piperazines is relatively high, (iii) the inhibitory potency for the reverse electron transfer is remarkably weaker than that for the forward event, and (iv) the piperazines efficiently suppressed the specific binding of a photoaffinity probe of natural-type acetogenins ([ (125)I]TDA) to the ND1 subunit. We therefore conclude that the action mechanism of the piperazine series differs from that of the original Deltalac-acetogenins. The photoaffinity labeling study using a newly synthesized photoreactive piperazine ([ (125)I]AFP) revealed that this compound binds to the 49 kDa subunit and an unidentified subunit, not ND1, with a frequency of approximately 1:3. A variety of traditional complex I inhibitors as well as Deltalac-acetogenins suppressed the specific binding of [ (125)I]AFP to the subunits. The apparent competitive behavior of inhibitors that seem to bind to different sites may be due to structural changes at the binding site, rather than occupying the same site. The meaning of the occurrence of diverse inhibitors exhibiting different mechanisms of action is discussed in light of the functionality of the membrane arm of complex I.  相似文献   
75.
A highly concentrated immobilized enzyme layer was formed on a small working electrode, and the behavior of the electrode as an amperometric sensor was examined. To this end, a super-hydrophobic layer was formed in an area other than the sensitive area by using polytetrafluoroethylene (PTFE) beads. A small droplet of an enzyme solution containing glucose oxidase (GOD) and bovine serum albumin (BSA) was placed on the sensitive area, concentrated by evaporation, and crosslinked with glutaraldehyde. With the same enzyme activity per unit area, the current density increased with smaller working electrodes. Also, the current density increased with higher enzyme loadings up to a limiting value. In addition, the linear range of the calibration plot was expanded to higher glucose concentrations. The enzyme electrode fabricated by the novel method was incorporated in a micro-flow channel. Compared with large enzyme electrodes with the same enzyme activity per unit area, smaller electrodes showed a significant increase in the current density and a decrease in the flow dependence. The conversion efficiency could be improved by narrowing the flow channel and increasing the number of electrodes, which was comparable with a large electrode placed in a shallow flow channel.  相似文献   
76.
Hepatitis C virus (HCV) core protein has shown to be localized in the detergent-resistant membrane (DRM), which is distinct from the classical raft fraction including caveolin, although the biological significance of the DRM localization of the core protein has not been determined. The HCV core protein is cleaved off from a precursor polyprotein at the lumen side of Ala(191) by signal peptidase and is then further processed by signal peptide peptidase (SPP) within the transmembrane region. In this study, we examined the role of SPP in the localization of the HCV core protein in the DRM and in viral propagation. The C terminus of the HCV core protein cleaved by SPP in 293T cells was identified as Phe(177) by mass spectrometry. Mutations introduced into two residues (Ile(176) and Phe(177)) upstream of the cleavage site of the core protein abrogated processing by SPP and localization in the DRM fraction. Expression of a dominant-negative SPP or treatment with an SPP inhibitor, L685,458, resulted in reductions in the levels of processed core protein localized in the DRM fraction. The production of HCV RNA in cells persistently infected with strain JFH-1 was impaired by treatment with the SPP inhibitor. Furthermore, mutant JFH-1 viruses bearing SPP-resistant mutations in the core protein failed to propagate in a permissive cell line. These results suggest that intramembrane processing of HCV core protein by SPP is required for the localization of the HCV core protein in the DRM and for viral propagation.  相似文献   
77.
Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez−/−) were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis–time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine) and taurine were not affected. Lack of hypotaurine in Ez−/− mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.  相似文献   
78.
Penicillium citrinum β-keto ester reductase (KER) can catalyze the reduction of methyl 4-bromo-3-oxobutyrate (BAM) to methyl (S)-4-bromo-3-hydroxybutyrate with high optical purity. To improve the thermostability of KER, protein engineering was performed using error-prone polymerase chain reaction-based random mutagenesis. Variants with the highest levels of thermostability contained the single amino acid substitutions L54Q, K245R, and N271D. The engineered L54Q variant of KER retained 62% of its initial activity after heat treatment at 30°C for 6 h, whereas wild-type KER showed only 15% activity. The L54Q substitution also conferred improved enantioselectivity by KER. An Escherichia coli cell biocatalyst that overproduced the L54Q mutant of KER and glucose dehydrogenase as a cofactor regeneration enzyme showed the highest level of BAM reduction in a water/butyl acetate two-phase system.  相似文献   
79.
Mitogen-activated protein kinases (MAPKs) are ubiquitous proteins that function in both normal and stress-related pathophysiological states of the cell. This study aimed to analyze the importance of p38MAPK in pancreatic injury using WBN/Kob rats with spontaneous chronic pancreatitis. Male WBN/Kob rats were injected with the p38MAPK inhibitor SB203580, starting at the age of 4 weeks, and sacrificed 6 weeks later. Compared with vehicle-treated rats, p38 inhibitor-treated rats exhibited a significant increase in pancreatic cell death and inflammation as assessed by histologic examination and myeloperoxidase activity, respectively. p38 inhibition decreased the expression of heat shock protein 27 (HSP27), an antioxidant protein, and enhanced accumulation of reactive oxygen species (ROS). In addition, the proapoptotic protein BAD was increased in the pancreas of rats treated with p38 inhibitor. In a pancreatic cell line (PANC-1), HSP27 knockdown augmented reactive oxygen species accumulation and cell death induced by tumor necrosis factor-α plus actinomycin D. In conclusion, p38MAPK suppresses chronic pancreatitis by upregulating HSP27 expression and downregulating BAD expression.  相似文献   
80.
Sonoda M  Ide H  Nakayama S  Sasaki A  Kitazaki S  Sato T  Nakagawa H 《Planta》2003,216(6):961-968
The spinach ( Spinacia oleracea L. (cv. Hoyo) nitrate reductase inactivator (NRI) is a novel protein that irreversibly inactivates NR. Using degenerate primers based on an N-terminal amino acid sequence of NRI purified from spinach leaves and a cDNA library, we isolated a full-length NRI cDNA from spinach that contains an open reading frame encoding 479 amino acid residues. This protein shares 67.4% and 51.1-68.3% amino acid sequence similarities with a nucleotide pyrophosphatase (EC 3.6.1.9) from rice and three types of the nucleotide pyrophosphatase-like protein from Arabidopsis thaliana, respectively. Immunoblot analysis revealed that NRI was constitutively expressed in suspension-cultured spinach cells; however, its expression level is quite low in 1-day-subcultured cells. Moreover, northern blot analysis indicated that this expression was regulated at the mRNA level. These results suggest that NRI functions in mature cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号