首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   14篇
  2023年   1篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   11篇
  2013年   13篇
  2012年   14篇
  2011年   22篇
  2010年   9篇
  2009年   17篇
  2008年   18篇
  2007年   15篇
  2006年   15篇
  2005年   14篇
  2004年   18篇
  2003年   23篇
  2002年   11篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1966年   1篇
  1959年   1篇
排序方式: 共有266条查询结果,搜索用时 409 毫秒
91.
92.
93.
Brachypodium distachyon (purple false brome) is a herbaceous species belonging to the grass subfamily Pooideae, which also includes major crops like wheat, barley, oat and rye. The species has been established as experimental model organism for understanding and improving cereal crops and temperate grasses. The complete genome of Bd21, the community standard line of B. distachyon, has been sequenced and protocols for Agrobacterium-mediated transformation have been published. Further improvements to the experimental platform including better evaluation systems for transgenic plants are still needed. Here we describe the growth conditions for Bd21 plants yielding highly responsive immature embryos that can generate embryogenic calli for transformation. A prolonged 20-h photoperiod produced seeds with superior immature embryos. In addition, osmotic treatment of embryogenic calli enhanced the efficiency of transfection by particle bombardment. We generated transgenic plants expressing Arabidopsis thaliana galactinol synthase 2 (AtGolS2) in these experiments. AtGolS2-expressing transgenics displayed significantly improved drought tolerance, increasing with increased expression of AtGolS2. These results demonstrate that AtGolS2 can confer drought tolerance to monocots and confirm that Brachypodium is a useful model to further explore ways to understand and improve major monocot crop species.  相似文献   
94.
Nesfatin-1 is a novel anorexic peptide that reduces the food intake of rodents when administered either intraventricularly or intraperitoneally. However, the molecular mechanism of intracellular signaling via Nesfatin-1 is yet to be resolved. In the current study, we investigated the ability of different neuronal cell lines to respond to Nesfatin-1 and further elucidated the signal transduction pathway of Nesfatin-1. To achieve this, we transfected several cell lines with various combinations of reporter vectors containing different kinds of response elements and performed reporter assays with Nesfatin-1, its active midsegment encoding 30 amino acid residues (M30) and M30-derived mutants. Notably, we found that both Nesfatin-1 as well as M30, significantly increased cAMP response element (CRE) reporter activity in a mouse neuroblastoma cell line, NB41A3. An antagonist of Melanocortin 3/4 receptor, SHU9119, aborted the promoter activity, and a mutant M30, which exerts no anorexic effect in vivo did not induce the CRE reporter activity in NB41A3 cells. Western blotting analyses revealed that Nesfatin-1 and M30 significantly increased the phosphorylation levels of CRE-binding protein (CREB), without altering the intracellular cAMP levels. Further, our study showed that a mitogen-activated protein kinase (MAPK) kinase inhibitor and an L-type Calcium (Ca2+) channel blocker abolished the M30-induced CREB phosphorylation. Furthermore, the radio-receptor assay revealed that 125I-Nesfatin-1 binds in a saturable fashion to the membrane fractions of the mouse hypothalamus and NB41A3 cells, with Kd values of 0.79 nM and 0.17 nM, respectively. Collectively, our findings indicate the presence of a Nesfatin-1-specific receptor on the cell surface of NB41A3 cells and mouse hypothalamus. Our study highlights that Nesfatin-1, via its receptor, induces the phosphorylation of CREB, thus activating the intracellular signaling cascade in neurons.  相似文献   
95.
Seed dormancy—the temporary failure of a viable seed to germinate under favorable conditions—is a complex characteristic influenced by many genes and environmental factors. To detect the genetic factors associated with seed dormancy in rice, we conducted a QTL analysis using chromosome segment substitution lines (CSSLs) derived from a cross between Nona Bokra (strong dormancy) and Koshihikari (weak dormancy). Comparison of the levels of seed dormancy of the CSSLs and their recurrent parent Koshihikari revealed that two chromosomal regions—on the short arms of chromosomes 1 and 6—were involved in the variation in seed dormancy. Further genetic analyses using an F2 population derived from crosses between the CSSLs and Koshihikari confirmed the allelic differences and the chromosomal locations of three putative QTLs: Sdr6 on chromosome 1 and Sdr9 and Sdr10 on chromosome 6. The Nona Bokra alleles of the three QTLs were associated with decreased germination rate. We discuss the physiological features of the CSSLs and speculate on the possible mechanisms of dormancy in light of the newly detected QTLs.  相似文献   
96.
An ABC transporter, TAP-Like (TAPL), was dissected into its amino-terminal transmembrane domain and the following core domain. When these domains were transiently expressed as tagged proteins with a His6- or Myc-epitope tag, the amino-terminal ones (Met1-Lys182) could not associate with each other, or with the full-length transporter (Met1-Ala766). However, both the core domain (Arg141-Ala766) and full-length protein mutually interacted. The amino-terminal domain (Met1-Arg141) as well as the full-length transporter fused with fluorescent protein GFP was sorted to lysosomal membranes upon their stable expression, as visualized by means of fluorescent microscopy, while the core domain (Arg141-Ala766) was broadly distributed in the intra-cellular membranes. These results suggest that the sorting signal for lysosomes is present within the amino-terminal transmembrane domain (Met1-Arg141) of the TAPL molecule.  相似文献   
97.
Insulin stimulation results in the activation of cyclin-dependent kinase-5 (CDK5) in lipid raft domains via a Fyn-dependent phosphorylation on tyrosine residue 15. In turn, activated CDK5 phosphorylates the Rho family GTP-binding protein TC10alpha on threonine 197 that is sensitive to the CDK5 inhibitor olomoucine and blocked by small interfering RNA-mediated knockdown of CDK5. The phosphorylation deficient mutant T197A-TC10alpha was not phosphorylated and excluded from the lipid raft domain, whereas the phosphorylation mimetic mutant (T197D-TC10alpha) was lipid raft localized. Insulin resulted in the GTP loading of T197D-TC10alpha but not T197A-TC10alpha and in parallel, T197D-TC10alpha but not T197A-TC10alpha depolymerized cortical actin and inhibited insulin-stimulated GLUT4 translocation. These data demonstrate that CDK5-dependent phosphorylation maintains TC10alpha in lipid raft compartments thereby disrupting cortical actin, whereas subsequent dephosphorylation of TC10alpha through inactivation of CDK5 allows for the re-assembly of F-actin. Because cortical actin reorganization is required for insulin-stimulated GLUT4 translocation, these data are consistent with a CDK5-dependent TC10alpha cycling between lipid raft and non-lipid raft compartments.  相似文献   
98.
Caspase activation has been extensively studied in the context of apoptosis. However, caspases also control other cellular functions, although the mechanisms regulating caspases in nonapoptotic contexts remain obscure. Drosophila IAP1 (DIAP1) is an endogenous caspase inhibitor that is crucial for regulating cell death during development. Here we describe Drosophila IKK-related kinase (DmIKKvarepsilon) as a regulator of caspase activation in a nonapoptotic context. We show that DmIKKvarepsilon promotes degradation of DIAP1 through direct phosphorylation. Knockdown of DmIKKvarepsilon in the proneural clusters of the wing imaginal disc, in which nonapoptotic caspase activity is required for proper sensory organ precursor (SOP) development, stabilizes endogenous DIAP1 and affects Drosophila SOP development. Our results demonstrate that DmIKKvarepsilon is a determinant of DIAP1 protein levels and that it establishes the threshold of activity required for the execution of nonapoptotic caspase functions.  相似文献   
99.
Cyclic AMP-dependent proteolysis of GATA-6 was characterized by fusing GATA-6 with the carboxyl-terminal membrane domain of SREBP-2. When the fusion protein was stably expressed in CHO-K1 cells, it was recovered in the ER membrane. This protein was processed in a similar manner to SREBP-2 upon cholesterol starvation, and the GATA-6 moiety moved into the nucleus. The GATA-6 moiety on the membrane became undetectable in the presence of dbcAMP or cholera toxin. However, H-89, K-252a, MG115 and lactacystin inhibited this decrease, suggesting that the cytoplasmic GATA-6 moiety of the fusion protein was degraded by proteasomes though A-kinase upon elevation of the cellular cAMP concentration.  相似文献   
100.
Nucleotide sequences of water-insoluble glucan-producing glucosyltransferase (gtf) genes of new mutans streptococci isolated from pig oral cavity, Streptococcus orisuis JCM14035, and of Streptococcus criceti HS-6 were determined. The gtf gene of S. orisuis JCM14035 consisted of a 4,401 bp ORF encoding for a 1,466 amino acids, and was revealed to belong to the gtfI group. The percent homology of amino acid sequence of the GTF-I from S. orisuis and S. criceti are 95.0%, however, this score ranges from 77.0% to 78.0% when compared to Streptococcus sobrinus 6715. The deduced N-terminal amino acid sequence was considered responsible for the secretion of GTF-I in S. orisuis JCM14035 and S. criceti HS-6 with high similarity to known GTF proteins from other streptococci. In addition, two other conserved regions, i.e., N-terminal putative catalytic-site and C-terminal glucan binding domain, were also found in GTF-Is of S. orisuis JCM14035 and S. criceti HS-6. Phylogenetic analysis suggested that S. orisuis JCM14035 and S. criceti HS-6, closely related to each other, resemble S. sobrinus and S. downei based on the amino acid sequences of the GTFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号