首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2388篇
  免费   113篇
  国内免费   1篇
  2502篇
  2024年   1篇
  2023年   12篇
  2022年   25篇
  2021年   45篇
  2020年   27篇
  2019年   31篇
  2018年   37篇
  2017年   29篇
  2016年   52篇
  2015年   90篇
  2014年   110篇
  2013年   162篇
  2012年   144篇
  2011年   174篇
  2010年   87篇
  2009年   103篇
  2008年   149篇
  2007年   152篇
  2006年   154篇
  2005年   154篇
  2004年   174篇
  2003年   148篇
  2002年   132篇
  2001年   18篇
  2000年   10篇
  1999年   24篇
  1998年   33篇
  1997年   23篇
  1996年   18篇
  1995年   18篇
  1994年   15篇
  1993年   20篇
  1992年   13篇
  1991年   13篇
  1990年   11篇
  1989年   8篇
  1988年   7篇
  1987年   14篇
  1986年   5篇
  1985年   10篇
  1984年   9篇
  1983年   8篇
  1982年   11篇
  1981年   6篇
  1980年   2篇
  1979年   6篇
  1978年   2篇
  1976年   3篇
  1973年   2篇
  1963年   1篇
排序方式: 共有2502条查询结果,搜索用时 0 毫秒
131.
We applied a yeast two-hybrid (Y2H) system to the high-throughput monitoring of two proteins’ interaction, a receptor for phytohormone gibberellin (GA) and its direct signal transducer DELLA. With this system, we screened inhibitors to the interaction. As a result, we discovered a chemical, 3-(2-thienylsulfonyl)pyrazine-2-carbonitrile (TSPC), and we confirmed that TSPC is an inhibitor for GA perception by in vitro and in planta evaluations.  相似文献   
132.
Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.  相似文献   
133.
We assayed N-methyl-d-aspartate (NMDA) receptors [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([3H]CPP) bindings) and evaluated their distribution in the brain by quantitative autoradiography in young adult and aged rats. In the young adult rats, NMDA receptors were present at relatively high concentrations in the cerebral cortex and hippocampus. In the aged rats, NMDA receptors were decreased in the nealy all areas of the brain, especially in the cerebral cortex and hippocampus. Chronic administration of bifemelane hydrochloride, a drug for sequela of cerebrovascular diseased, at a dose of 15 mg/kg/day for 14 days, markedly attenuated these decrease in NMDA receptors. Since NMDA receptors are considered to be involved in memory and learning processes, our results suggest that bifemelane hydrochloride may be applicable to the treatment of disturbed memory and learning.  相似文献   
134.
135.
The Marasmius oreades mushroom lectin (MOA) is well known for its exquisite binding specificity for blood group B antigens. In addition to its N-terminal carbohydrate-binding domain, MOA possesses a C-terminal domain with unknown function, which structurally resembles hydrolytic enzymes. Here we show that MOA indeed has catalytic activity. It is a calcium-dependent cysteine protease resembling papain-like cysteine proteases, with Cys215 being the catalytic nucleophile. The possible importance of MOA’s proteolytic activity for mushroom defense against pathogens is discussed.  相似文献   
136.
To elucidate the specific interactions between the peroxisome proliferator-activated receptor (PPARα) and ligand GW409544 (GW), we obtained the solvated structures of the PPARα+GW complexes for human, mouse and rat by classical molecular mechanics calculations, and investigated their electronic properties by ab initio fragment molecular orbital calculations. The results indicate that the positively charged amino acids (Lys and Arg) of PPARα make a major contribution to the binding between PPARα and GW. In addition, it was clarified that Ser280 and Tyr314 of human and rat PPARα have a large attractive interaction with GW, while Ser280, Tyr314 and His440 of mouse PPARα have large interaction. These results on the difference in specific interactions between human and mouse/rat PPARα will be useful for predicting the effects of new chemicals on the human body based on the biomedical studies for the experimental animals such as mouse and rat.  相似文献   
137.
Heat shock protein 70 (HSP70) is a member of a highly conserved superfamily of intracellular chaperones called stress proteins that can activate innate and adaptive immune responses. We evaluated the effect of a fusion DNA vaccine that encoded mycobacterial HSP70 and MPT51, a major secreted protein of Mycobacterium tuberculosis. Spleen cells from mice immunized with fusion DNA of full-length HSP70 and MPT51 produced a higher amount of interferon-γ (IFN-γ) in response to the CD4+, but not the CD8+ T-cell epitope peptide on MPT51 than those from mice immunized with MPT51 DNA. Furthermore, because HSP70 comprises the N-terminal ATPase domain and the C-terminal peptide-binding domain, we attempted to identify the domain responsible for its enhancing effect. The fusion DNA vaccine that encoded the C-terminal domain of HSP70 and MPT51 induced a higher MPT51-specific IFN-γ production by CD4+ T cells than the vaccine that encoded MPT51 alone, whereas that with the N-terminal domain did not. Similar results were obtained by immunization with the fusion proteins. These results suggest that the DNA vaccine that encodes a chimeric antigen molecule fused with mycobacterial HSP70, especially with its C-terminal domain, can induce a stronger antigen-specific T-helper cell type 1 response than antigen DNA alone.  相似文献   
138.
139.
Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号