首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   4篇
  2024年   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   4篇
  2013年   19篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   2篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有170条查询结果,搜索用时 23 毫秒
81.
The platelet protein, P47, with the molecular weight of 47,000 that is phosphorylated during platelet activation is closely associated with secretion from granules in these cells. P47 interacts with actin directly or indirectly. We investigated the ability of P47 to bind to actin by actin-affinity chromatography. In the eluate from an actin-Sepharose column, there was no phosphorylated P47, but in the first fraction that passed through the column, there was. The results suggested that P47 does not bind to actin directly.  相似文献   
82.
Among wild plants ofHydrangea serrata (Hydrangeaceae) in Japan, there are sweet plants whose leave contain a kind of isocoumarin, phyllodulcin, which happens to be 350 times as sweet as sucrose to the human tongue. In a primary beech forest in Ashu, Kyoto, the spatial distribution of sweet plants and temporal and the spatial distribution of phyllodulcin within and among plants were investigated using a high performance liquid chromatograph. The distribution of sweet plants was confined within a valley and was parapatric with non-sweet plants. A plant's characteristic phyllodulcin accumulation did not change, even when transplanted into the different habitats. The phyllodulcin content of the sweet plants varied greatly among plants, and the population mean peaked in July when the plants flowered. Within a plant, phyllodulcin content was elevated by partial defoliation. We examined the possible effect of phyllodulcin on herbivory by a specialist leafmining herbivore,Antispila hydrangifoliella (Lepidoptera: Heliozelidae). We transplanted sweet and nonsweet plants reciprocally between their original habitats, excluded attacks by parasitoids, and compared performance of the leafminer. Leafminer colonization and larval survivorship on transplanted andin situ plants was not significantly different between sites. The fact that accumulation of phyllodulcin did not augment a defensive function, at least against herbivory by the leafminer, and the sporadic distribution of phyllodulcin-accumulating plants, suggest that the genotypes synthesizing phyllodulcin emerged independently at separate localities by mutation, and that the genotypes are almost adaptively neutral in defence against the specialist herbivore.  相似文献   
83.
Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.Single-stranded DNA (ssDNA)3-binding proteins have been assigned the role of removing secondary structure in DNA and protecting ssDNA from hydrolysis by nucleases (1). However, in addition to these mundane roles, ssDNA-binding proteins are now recognized as a key component of the replisome where they physically and functionally interact with other replication proteins and with the primer-template (24). ssDNA-binding proteins are also engaged in DNA recombination and repair (5). In view of these multiple roles, it has been difficult to identify the specific defect in genetically altered ssDNA-binding proteins that leads to an observed phenotype.The crystal structures of several prokaryotic ssDNA-binding proteins have been determined (68). These proteins have a conserved oligosaccharide-oligonucleotide binding fold (OB-fold) that is thought to bind the ssDNA by means of stacking and electrostatic interactions (6). Prokaryotic ssDNA-binding proteins also have an acidic C-terminal tail that is essential for bacterial and phage growth (913).The ssDNA-binding protein of bacteriophage T7 is encoded by gene 2.5 (14). The gene 2.5 protein (gp2.5) is a homodimer in solution, a structure that is stabilized by its C-terminal tail (9, 15). The C-terminal tail of one monomer of gp2.5 binds in a trans mode to the ssDNA-binding cleft of the other subunit, thus stabilizing the dimer interface observed in the crystal structure (6). The current model proposes that the positively charged DNA-binding cleft is shielded by the electrostatic charges of the C-terminal tail in the absence of ssDNA, thus facilitating oligomerization of gp2.5. Upon binding ssDNA, the dimer dissociates to allow the C-terminal tail to interact with other replication proteins (16). The tail modulates the affinity for ssDNA and protein-protein interactions by functioning as a two-way switch (6, 17). This mode of function is applicable to other prokaryotic ssDNA-binding proteins, namely Escherichia coli SSB protein and T4 gp32 (10, 13, 15, 1822).gp2.5 is one of four proteins that include the T7 replisome. The other three proteins are the T7 gene 5 DNA polymerase (gp5), its processivity factor, E. coli thioredoxin (trx), and the multifunctional gene 4 helicase-primase (gp4). gp5 and trx bind with high affinity (KD of 5 nm), and the two proteins are normally found in complex (gp5/trx) at a stoichiometry of one to one (23). The acidic C-terminal tail of gp2.5 is critical for the interactions of the protein with gp5/trx and gp4 (9, 24). The C-terminal tail binds to a positively charged segment located in the thumb subdomain of the gp5 (25). This fragment, designated the trx binding domain (TBD), is also the site of binding of the processivity factor, E. coli trx, and the C terminus of gp4. The multiple interactions of the C terminus of gp2.5 could thus function to coordinate the dynamic reactions occurring at the replication fork. gp2.5 is known to be critical for establishing coordination during leading and lagging strand DNA synthesis (26, 27).This C-terminal tail of gp2.5 is an acidic 26-amino acid segment with an aromatic phenylalanine as the C-terminal residue. The C-terminal tail is not seen in the crystal structure because gp2.5Δ26, lacking the tail, was used for crystallization; the wild-type protein did not yield crystals that diffracted (6). gp2.5ΔF designates a genetically modified gp2.5 lacking the C-terminal phenylalanine. gp2.5ΔF does not support the growth of T7Δ2.5 phage lacking gene 2.5 (28). Interestingly, T7 gene 4 protein also has an acidic C-terminal tail with a C-terminal phenylalanine (29). Again, the phenylalanine is critical for the interaction of gp4 with gp5/trx (29). Further evidence for overlapping binding sites of the C termini of these two proteins comes from studies with chimeric proteins (28, 29). The C-terminal tails of gp2.5 and gp4 can be exchanged, and the chimeric proteins support the growth of T7 phage lacking the corresponding wild-type protein.We recently designed a screen for suppressors of dominant lethal mutations of gp2.5 (30). The screen identified mutations in gene 5, the structural gene for T7 DNA polymerase (Fig. 1), which suppresses the lethal phenotype of gp2.5 mutant in which the C-terminal phenylalanine was moved to the penultimate position (gp2.5ΔF232InsF231). One of the altered suppressor genes (gp5, gp5-sup1) encodes a gp5 in which where glycine at position 371 is replaced by lysine (G371K). Whereas the other (gp5-sup2) encodes a protein in which threonine 258 and alanine 411 are replaced by methionine and threonine, respectively (T258M and A411T). The suppressor mutations in gp5 are necessary and sufficient to suppress the lethal phenotype of gp2.5ΔF232InsF231. The affected residues map in proximity to aromatic residues and to residues in close proximity to DNA as seen in the crystal structure of gp5/trx in complex with DNA (31). Throughout this study, gp2.5ΔF232InsF231 mutant will be referred to as gp2.5-FD because it effectively switches the positions of the C-terminal phenylalanine and the adjacent aspartic acid. E. coli SSB protein also has a C-terminal phenylalanine, and recent studies have shown that this residue inserts into a hydrophobic region consisting of exonuclease I of E. coli (45, 46).Open in a separate windowFIGURE 1.Amino acid changes in gp5 suppressor mutant polymerase(s). The amino acid changes in gp5 arising from the suppressor mutations in gene 5 are identified in the crystal structure of gp5/trx in complex with a primer-template and a nucleoside triphosphate (31). gp5 (light gray), trx (dark gray), and primer/template (red) are depicted. The suppressor mutation G371K (gp5-sup1) is shown in yellow and T258M and A411T (gp5-sup2) in orange.In this study, we have purified the two suppressor DNA polymerases and characterized them individually and in interaction with the other T7 replication proteins. Whereas wild-type gp5 binds with low affinity to gp2.5-FD, the DNA polymerases harboring the suppressor mutations bind with a higher affinity. An interesting finding is that whereas wild-type gp2.5 enables gp5/trx to catalyze strand displacement synthesis at a nick in DNA, gp2.5-FD does not support this reaction. Strand displacement synthesis is necessary for the initiation of leading strand DNA synthesis at a nick because it creates a 5′-single-stranded DNA tail for loading of the T7 helicase (32).  相似文献   
84.
85.
Phylogenetic relationships of seven isolates of the genus Haptoglossa parasitic on terrestrial nematodes within the Peronosporomycetes were analyzed using 18S rDNA sequence data with 21 peronosporomycetes, 2 marine stramenopilous flagellates, and 2 hyphochytridiomycetes. The marine stramenopilous flagellates and hyphochytridiomycetes were used as the outgroup. All Haptoglossa isolates formed a monophyletic clade and clustered with the marine genus Eurychasma. The clade of Haptoglossa and Eurychasma formed a sister-group to the clade that consisted of all other peronosporomycetes. These results suggest that the genus Haptoglossa and other terrestrial peronosporomycetes included in the two subclasses, the Saprolegniomycetidae and the Peronosporomycetidae, might have originally adapted to the terrestrial environment individually. In the maximum-likelihood (ML) analysis, the Haptoglossa clade was divided into three subclades, one aplanosporic species clade and two zoosporic species clades. Phylogenetic analyses of combined 18S rDNA and cox2 genes among five species of Haptoglossa supported the results of the ML analysis using 18S rDNA and suggested that zoosporic species may be separated into two lineages. This topology of the analysis may suggest that aplanosporic species diverged from zoosporic species.  相似文献   
86.
87.
88.

Objective

The acute physiology, age and chronic health evaluation (APACHE) II score and other related scores have been used for evaluation of illness severity in the intensive care unit (ICU), but there is still a need for real-time and sensitive prognostic biomarkers. Recently, alarmins from damaged tissues have been reported as alarm-signaling molecules. Although ATP is a member of the alarmins and its depletion in tissues closely correlates with multiple-organ failure, blood ATP level has not been evaluated in critical illness. To identify real-time prognostic biomarker of critical illness, we measured blood ATP levels and the lactate/ATP ratio (ATP-lactate energy risk score, A-LES) in critically ill patients.

Methods and Results

Blood samples were collected from 42 consecutive critically ill ICU patients and 155 healthy subjects. The prognostic values of blood ATP levels and A-LES were compared with APACHE II score. The mean ATP level (SD) in healthy subjects was 0.62 (0.19) mM with no significant age or gender differences. The median ATP level in severely ill patients at ICU admission was significantly low at 0.31 mM (interquartile range 0.25 to 0.44) than the level in moderately ill patient at 0.56 mM (0.38 to 0.70) (P<0.01). Assessment with ATP was further corrected by lactate and expressed as A-LES. The median A-LES was 2.7 (2.1 to 3.3) in patients with satisfactory outcome at discharge but was significantly higher in non-survivors at 38.9 (21.0 to 67.9) (P<0.01). Receiver operating characteristic analysis indicated that measurement of blood ATP and A-LES at ICU admission are as useful as APACHE II score for prediction of mortality.

Conclusion

Blood ATP levels and A-LES are sensitive prognostic biomarkers of mortality at ICU admission. In addition, A-LES provided further real-time evaluation score of illness severity during ICU stay particularly for critically ill patients with APACHE II scores of ≥20.0.  相似文献   
89.
Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that SE is integral to pri-miRNA processing by DCL1. SE stimulates DCL1 cleavage of the pri-miRNA in an ionic strength-dependent manner. SE uses its N-terminal domain to bind to RNA and requires both N-terminal and ZnF domains to bind to DCL1. However, when DCL1 is bound to RNA, the interaction with the ZnF domain of SE becomes indispensible and stimulates the activity of DCL1 without requiring SE binding to RNA. Our results suggest that the interactions among SE, DCL1 and RNA are a potential point for regulating pri-miRNA processing.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号