首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1474篇
  免费   103篇
  2022年   7篇
  2021年   11篇
  2020年   4篇
  2019年   9篇
  2018年   16篇
  2017年   10篇
  2016年   23篇
  2015年   37篇
  2014年   35篇
  2013年   77篇
  2012年   71篇
  2011年   85篇
  2010年   44篇
  2009年   42篇
  2008年   57篇
  2007年   82篇
  2006年   65篇
  2005年   67篇
  2004年   63篇
  2003年   52篇
  2002年   60篇
  2001年   63篇
  2000年   52篇
  1999年   50篇
  1998年   25篇
  1997年   17篇
  1996年   10篇
  1995年   12篇
  1994年   17篇
  1993年   16篇
  1992年   51篇
  1991年   34篇
  1990年   36篇
  1989年   38篇
  1988年   33篇
  1987年   31篇
  1986年   22篇
  1985年   19篇
  1984年   14篇
  1983年   14篇
  1982年   9篇
  1981年   13篇
  1980年   9篇
  1979年   10篇
  1978年   15篇
  1977年   13篇
  1976年   4篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
排序方式: 共有1577条查询结果,搜索用时 31 毫秒
991.
Tanaka S  Araki H 《PLoS genetics》2011,7(6):e1002136
Genomic instability is a hallmark of human cancer cells. To prevent genomic instability, chromosomal DNA is faithfully duplicated in every cell division cycle, and eukaryotic cells have complex regulatory mechanisms to achieve this goal. Here, we show that untimely activation of replication origins during the G1 phase is genotoxic and induces genomic instability in the budding yeast Saccharomyces cerevisiae. Our data indicate that cells preserve a low level of the initiation factor Sld2 to prevent untimely initiation during the normal cell cycle in addition to controlling the phosphorylation of Sld2 and Sld3 by cyclin-dependent kinase. Although untimely activation of origin is inhibited on multiple levels, we show that deregulation of a single pathway can cause genomic instability, such as gross chromosome rearrangements (GCRs). Furthermore, simultaneous deregulation of multiple pathways causes an even more severe phenotype. These findings highlight the importance of having multiple inhibitory mechanisms to prevent the untimely initiation of chromosome replication to preserve stable genome maintenance over generations in eukaryotes.  相似文献   
992.
Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of alfa-iduronidase (IDUA), which leads to intralysosomal accumulation of glycosaminoglycans. Some studies have revealed that oxidative stress plays an important role in MPS I. However, the mechanisms by which these alterations occur are still not fully understood. The aim of this study was to analyze genomic instability in blood cells from murine model of MPS I by single cell gel (comet) assay and micronucleus test. The results pointed out genetic damage in blood cells as depicted by the single cell gel (comet) assay results. By contrast, no increase of micronucleated cells were found in mouse blood cells when compared to negative control. Taken together, our results suggest that IDUA deficiency induces genomic damage in blood cells. Certainly, this finding offers new insights into the mechanisms underlying the relation between IDUA deficiency and clinical manifestations that can occur in MPS I patients.  相似文献   
993.
We have recently developed a new target plate (BLOTCHIP®) for MALDI‐MS. An advantage of this procedure is that it does not require the lowering of protein concentrations in test samples prior to analysis. Accordingly, this new technology enables the detection of peptides present in blood samples, including those that would otherwise be adsorbed to abundant blood proteins and would thus escape detection. Using this technology, we analyzed the peripheral blood of patients with pregnancy‐induced hypertension (PIH; the most common serious complication of pregnancy) to test a potential utility of the technology for monitoring of the pathophysiological status. In the present study, we found 23 characteristic peptides for PIH in the blood serum of pregnant women. Offline LC‐MALDI MS/MS identified 7 of the 23 peptides as fragments derived from kininogen‐1 (three peptides), fibrinogen‐α, complement component C4‐A/B, α‐2‐HS‐glycoprotein and inter‐α‐trypsin inhibitor heavy chain H4. 2‐D scatter plots with combinations of the peptides found in the present study can be grouped for pregnant women with/without PIH, which would be satisfactory reflected for their status. Additionally, the levels of most of these peptides found were significantly decreased by albumin/IgG depletion prior to BLOTCHIP® analysis in accordance with conventional proteomics procedures. These results indicated that BLOTCHIP® analysis can be applied for discovery study of PIH biomarker candidates.  相似文献   
994.
Platelet-derived growth factor (PDGF) plays critical roles in mesangial cell (MC) proliferation in mesangial proliferative glomerulonephritis. We showed previously that Smad1 contributes to PDGF-dependent proliferation of MCs, but the mechanism by which Smad1 is activated by PDGF is not precisely known. Here we examined the role of c-Src tyrosine kinase in the proliferative change of MCs. Experimental mesangial proliferative glomerulonephritis (Thy1 GN) was induced by a single intravenous injection of anti-rat Thy-1.1 monoclonal antibody. In Thy1 GN, MC proliferation and type IV collagen (Col4) expression peaked on day 6. Immunohistochemical staining for the expression of phospho-Src (pSrc), phospho-Smad1 (pSmad1), Col4, and smooth muscle α-actin (SMA) revealed that the activation of c-Src and Smad1 signals in glomeruli peaked on day 6, consistent with the peak of mesangial proliferation. When treated with PP2, a Src inhibitor, both mesangial proliferation and sclerosis were significantly reduced. PP2 administration also significantly reduced pSmad1, Col4, and SMA expression. PDGF induced Col4 synthesis in association with increased expression of pSrc and pSmad1 in cultured MCs. In addition, PP2 reduced Col4 synthesis along with decreased pSrc and pSmad1 protein expression in vitro. Moreover, the addition of siRNA against c-Src significantly reduced the phosphorylation of Smad1 and the overproduction of Col4. These results provide new evidence that the activation of Src/Smad1 signaling pathway plays a key role in the development of glomerulosclerosis in experimental glomerulonephritis.  相似文献   
995.
β-Amyloid peptide (Aβ) is generated via the sequential proteolysis of β-amyloid precursor protein (APP) by β- and γ-secretases, and plays a crucial role in the pathogenesis of Alzheimer’s disease (AD). Here, we sought to clarify the role of insulin-like growth factor-1 (IGF-1), implicated in the AD pathomechanism, in the generation of Aβ. Treatment of neuroblastoma SH-SY5Y cells expressing AD-associated Swedish mutant APP with IGF-1 did not alter cellular levels of APP, but significantly increased those of β-C-terminal fragment (β-CTF) and secreted Aβ. IGF-1 also enhanced APP phosphorylation at Thr668. Treatment of β-CTF-expressing cells with IGF-1 increased the levels of β-CTF and secreted Aβ. The IGF-1-induced augmentation of β-CTF was observed in the presence of γ-secretase inhibitors, but not in cells expressing β-CTF with a Thr668 to alanine substitution. These results suggest that IGF-1 promotes Aβ production through a secretase-independent mechanism involving APP phosphorylation.  相似文献   
996.
In order to analyze the salt transport affected by roots and its effects on soil salinity in an experimental irrigated field newly established in an alluvial valley of the Yellow River in China, spatial distribution of ions contained in waters, soils and crops relevant to these phenomena were evaluated there. During the intensive surveys conducted in year 2007–2008, the Yellow River water, irrigation canal water, groundwater, field soils and crops, etc. were sampled and their chemical characteristics such as electrical conductivity, concentrations of ions Na+, Ca2+, Mg2+, K+, Cl, SO42−and NO3 were measured. Irrigation seemed to cause increases in the concentrations of ions Na+, Cl and SO42− in the groundwater. Although those were also major ions contained in the field soil, the soil was classed as saline but not sodic according to the standard classification. On the other hand, K+, which is one of the major essential nutrients for plant growth, was highly concentrated in the crops, while Na+ was not concentrated because of crop’s poor ability to absorb it. The ion concentration within the plant body seemed to be reflected by the active and selective ion uptake by roots and the transpiration stream. Furthermore, salt accumulation in the surface-irrigated field largely depended on the upward transport of water and ions in the soil profile affected by root absorption capacity. The information obtained in this study will contribute to the development of scientific methods for sustainable and effective plant production in irrigated fields.  相似文献   
997.
Transient receptor potential channels have recently been implicated in physiological functions in a urogenital system. In this study, we investigated the role of transient receptor potential vanilloid 4 (TRPV4) channels in a stretch sensing mechanism in mouse primary urothelial cell cultures. The selective TRPV4 agonist, 4α-phorbol 12,13-didecanoate (4α-PDD) evoked Ca2+ influx in wild-type (WT) urothelial cells, but not in TRPV4-deficient (TRPV4KO) cells. We established a cell-stretch system to investigate stretch-evoked changes in intracellular Ca2+ concentration and ATP release. Stretch stimulation evoked intracellular Ca2+ increases in a stretch speed- and distance-dependent manner in WT and TRPV4KO cells. In TRPV4KO urothelial cells, however, the intracellular Ca2+ increase in response to stretch stimulation was significantly attenuated compared with that in WT cells. Stretch-evoked Ca2+ increases in WT urothelium were partially reduced in the presence of ruthenium red, a broad TRP channel blocker, whereas that in TRPV4KO cells did not show such reduction. Potent ATP release occurred following stretch stimulation or 4α-PDD administration in WT urothelial cells, which was dramatically suppressed in TRPV4KO cells. Stretch-dependent ATP release was almost completely eliminated in the presence of ruthenium red or in the absence of extracellular Ca2+. These results suggest that TRPV4 senses distension of the bladder urothelium, which is converted to an ATP signal in the micturition reflex pathway during urine storage.Transient receptor potential vanilloid 4 (TRPV4),3 a member of the TRP superfamily of cation channels, is a Ca2+-permeable channel activated by a wide variety of physical and chemical stimuli (1, 2). TRPV4 was originally viewed as an osmo- or mechano-sensor, because the channel opens in response to hypotonicity-induced cell swelling (35) and shear stress (6). Alternatively, TRPV4 can be activated by diverse chemical stimuli such as synthetic phorbol ester 4α-phorbol 12,13-didecanoate (4α-PDD) (7), a botanical agent (bisandrographolide A), anandamide metabolites such as arachidonic acid and epoxyeicosatrienoic acids, as well as moderate warmth (>27 °C) (810). TRPV4 is widely expressed throughout the body, including renal epithelium, auditory hair cells, skin keratinocytes, hippocampus neurons, endothelial cells, and urinary bladder epithelium, thereby contributing to numerous physiological processes such as osmoregulation (11, 12), hearing (13), thermal and mechanical hyperalgesia (14, 15), neural activity in the brain (16), skin barrier recovery (17), and cell volume regulation (18). Therefore, the TRPV4 channel is now considered a multimodal transducer in various tissues and cells.Non-neuronal cells within the urinary bladder wall (notably the transitional epithelial cells (urothelial cells)) function as a barrier against ions, solutes, and infection and also participate in the detection of physical and chemical stimuli (1921). The urothelium expresses various sensory receptors and channels (bradykinin receptors, adrenergic/cholinergic receptors, nerve growth factor receptors, purinergic receptors, amiloride-sensitive Na+ channels, and TRP channels), all of which are substantially implicated in modulating bladder functions (22).Recently, the potential roles of TRP channels have been explored in the bladder. Thus far, expression of TRPV1, TRPV2, TRPV4, TRPA1, and TRPM8 has been reported in different regions of urogenital tracts (21). TRPV1 is reportedly expressed in the epithelial cells lining the urothelium, in interstitial cells, and in sensory nerve terminals. TRPV1-deficient mice displayed a higher frequency of low amplitude non-voiding bladder contractions in comparison with wild-type (WT) mice (22), suggesting that TRPV1 is required for detection of bladder stretch, which involves stretch-evoked release of ATP and nitric oxide. The release of both mediators was reduced in the bladders of TRPV1-deficient mice. In a clinical setting, capsaicin or resiniferatoxin reduces bladder overactivity through desensitization of bladder afferents by acting on TRPV1 (23). Expression of other TRP channels, e.g. TRPM8 and TRPA1, was found in sensory C fibers in the bladder (2427). The diagnostic ice water test is utilized to determine whether disturbance of bladder function involves neurogenic components, one of which could be related to TRPM8 function, in patients with spinal cord lesion (28). TRPA1 in sensory afferents is activated by several known ligands (allyl isothiocyanate and cinnamaldehyde), thereby inducing bladder overactivity (26). TRPV2 is expressed by several cell types in the rat bladder (29); however, its physiological function has not yet been investigated. TRPV4 is expressed in the urothelium and in smooth muscle cells of the urinary bladder (30, 31). Activation of the channel by specific ligands leads to augmentation of bladder contraction amplitude in cystometry and induction of bladder overactivity in vivo. In a separate cystometry analysis in conjunction with behavioral experiments, the intermicturitional interval was elongated and storage urine volume was increased in TRPV4-deficient mice compared with WT mice (32). Thus, TRPV4 may contribute to bladder function, especially to mediating bladder distention signals to primary afferent nerves during urine storage. However, whether urothelial TRPV4 is required for sensing mechanical stretch, or to what extent urothelial TRPV4 contributes to stretch-evoked ATP release, has not been precisely determined.In the present study, we examined the functional contribution of TRPV4 to stretch-dependent urothelial cell responses and stretch-evoked ATP release in vitro. We first established a primary cell culture for mouse urothelium and retention of TRPV4 expression was confirmed. Because urothelial cells are physically extended during urine storage in vivo, we reproduced this phenomenon in an in vitro experiment using the uni-axial cell stretch system. All the experiments were performed by comparing urothelial cells obtained from WT mice and TRPV4-deficient mice to evaluate the correlation between TRPV4 expression and stretch responses. We demonstrated that urothelial cells sense mechanical stretch stimuli via TRPV4 channels, which induces robust Ca2+ influx and contributes to ATP release upon extension.  相似文献   
998.
Crohn's disease (CD) is associated with gut barrier dysfunction. Besides the baseline barrier defect, a subgroup of patients also expresses an intestinal barrier hyperresponsiveness to nonsteroidal anti-inflammatory drugs. On the other hand, the anti-tumour necrosis factor alpha (TNF-α) treatment has brought benefits to these patients. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, and Etanercept (ETC), a TNF-α antagonist on the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. A total of 47 Wistar rats were randomized into seven groups, as follows: (1) Sham: sham induced-colitis; (2) TNBS: nontreated induced-colitis; (3) Lumiracoxib control; (4) Lumiracoxib-treated induced-colitis; (5) ETC control; (6) ETC-treated induced-colitis; (7) Lumiracoxib-ETC-treated induced-colitis. Rats from groups 6 and 7 presented significant improvement of macroscopic and histopathological damages in the distal colon. The gene expression of COX-2 mRNA, as well of TNF-α mRNA, decreased significantly in groups 6 and 7 compared to the TNBS nontreated and lumiracoxib-treated groups. The treatment only with lumiracoxib did not reduce the inflammation on TNBS-induced experimental colitis. ETC attenuated the damage seen in the colon and reduced the inflammation caused by TNBS. Our results suggest that down-regulation of TNF-α and COX-2 resulted in a decrease in inflammation caused by TNBS and thus provided some protection from the colonic damage caused by TNBS.  相似文献   
999.
Kurita M  Nishino S  Kato M  Numata Y  Sato T 《PloS one》2012,7(6):e39212
Remission is the primary goal of treatment for major depressive disorder (MDD). However, some patients do not respond to treatment. The main purpose of this study was to determine whether brain-derived neurotrophic factor (BDNF) levels are correlated with treatment outcomes. In a naturalistic study, we assessed whether plasma BDNF levels were correlated with clinical outcomes by measuring plasma BDNF in patients with depressive syndrome (MADRS score ≥ 18), and subsequently comparing levels between the subgroup of patients who underwent remission (MADRS score ≤ 8) and the subgroup who were refractory to treatment (non-responders). Patients with depressive syndrome who underwent remission had significantly higher plasma BDNF levels (p<0.001), regardless of age or sex. We also found a significant negative correlation between MADRS scores and plasma BDNF levels within this group (ρ = -0.287, p = 0.003). In contrast, non-responders had significantly lower plasma BDNF levels (p = 0.029). Interestingly, plasma BDNF levels in the non-responder group were significantly higher than those in the remission group in the initial stage of depressive syndrome (p = 0.002). Our results show that plasma BDNF levels are associated with clinical outcomes during the treatment of depression. We suggest that plasma BDNF could potentially serve as a prognostic biomarker for depression, predicting clinical outcome. TRIAL REGISTRATION: UMIN Clinical Trials Registry UMIN000006264.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号