首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1158篇
  免费   65篇
  1223篇
  2023年   2篇
  2022年   6篇
  2021年   17篇
  2020年   6篇
  2019年   12篇
  2018年   17篇
  2017年   10篇
  2016年   26篇
  2015年   38篇
  2014年   54篇
  2013年   70篇
  2012年   65篇
  2011年   77篇
  2010年   45篇
  2009年   36篇
  2008年   69篇
  2007年   58篇
  2006年   85篇
  2005年   70篇
  2004年   71篇
  2003年   69篇
  2002年   59篇
  2001年   16篇
  2000年   8篇
  1999年   13篇
  1998年   15篇
  1997年   8篇
  1996年   10篇
  1995年   5篇
  1994年   6篇
  1993年   11篇
  1992年   11篇
  1991年   5篇
  1990年   13篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   11篇
  1985年   6篇
  1984年   9篇
  1983年   10篇
  1982年   10篇
  1981年   7篇
  1980年   15篇
  1979年   6篇
  1978年   10篇
  1977年   4篇
  1976年   2篇
  1975年   5篇
  1973年   4篇
排序方式: 共有1223条查询结果,搜索用时 18 毫秒
91.
The X-ray crystal structure of a catalytic site mutant of beta-amylase, E172A (Glu172 --> Ala), from Bacillus cereus var. mycoides complexed with a substrate, maltopentaose (G5), and the wild-type enzyme complexed with maltose were determined at 2.1 and 2.0 A resolution, respectively. Clear and continuous density corresponding to G5 was observed in the active site of E172A, and thus, the substrate, G5, was not hydrolyzed. All glucose residues adopted a relaxed (4)C(1) conformation, and the conformation of the maltose unit for Glc2 and Glc3 was much different from those of other maltose units, where each glucose residue of G5 is named Glc1-Glc5 (Glc1 is at the nonreducing end). A water molecule was observed 3.3 A from the C1 atom of Glc2, and 3.0 A apart from the OE1 atom of Glu367 which acts as a general base. In the wild-type enzyme-maltose complex, two maltose molecules bind at subsites -2 and -1 and at subsites +1 and +2 in tandem. The conformation of the maltose molecules was similar to that of the condensation product of soybean beta-amylase, but differed from that of G5 in E172A. When the substrate flips between Glc2 and Glc3, the conformational energy of the maltose unit was calculated to be 20 kcal/mol higher than that of the cis conformation by MM3. We suggest that beta-amylase destabilizes the bond that is to be broken in the ES complex, decreasing the activation energy, DeltaG(++), which is the difference in free energy between this state and the transition state.  相似文献   
92.
The crystal structures of beta-amylase from Bacillus cereus var. mycoides in complexes with five inhibitors were solved. The inhibitors used were three substrate analogs, i.e. glucose, maltose (product), and a synthesized compound, O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose (GGX), and two affinity-labeling reagents with an epoxy alkyl group at the reducing end of glucose. For all inhibitors, one molecule was bound at the active site cleft and the non-reducing end glucose of the four inhibitors except GGX was located at subsite 1, accompanied by a large conformational change of the flexible loop (residues 93-97), which covered the bound inhibitor. In addition, another molecule of maltose or GGX was bound about 30 A away from the active site. A large movement of residues 330 and 331 around subsite 3 was also observed upon the binding of GGX at subsites 3 to 5. Two affinity-labeling reagents, alpha-EPG and alpha-EBG, were covalently bound to a catalytic residue (Glu-172). A substrate recognition mechanism for the beta-amylase was discussed based on the modes of binding of these inhibitors in the active site cleft.  相似文献   
93.
A G protein-coupled receptor responsive to bile acids   总被引:6,自引:0,他引:6  
So far some nuclear receptors for bile acids have been identified. However, no cell surface receptor for bile acids has yet been reported. We found that a novel G protein-coupled receptor, TGR5, is responsive to bile acids as a cell-surface receptor. Bile acids specifically induced receptor internalization, the activation of extracellular signal-regulated kinase mitogen-activated protein kinase, the increase of guanosine 5'-O-3-thio-triphosphate binding in membrane fractions, and intracellular cAMP production in Chinese hamster ovary cells expressing TGR5. Our quantitative analyses for TGR5 mRNA showed that it was abundantly expressed in monocytes/macrophages in human and rabbit. Treatment with bile acids was found to suppress the functions of rabbit alveolar macrophages including phagocytosis and lipopolysaccharide-stimulated cytokine productions. We prepared a monocytic cell line expressing TGR5 by transfecting a TGR5 cDNA into THP-1 cells that did not express TGR5 originally. Treatment with bile acids suppressed the cytokine productions in the THP-1 cells expressing TGR5, whereas it did not influence those in the original THP-1 cells, suggesting that TGR5 is implicated in the suppression of macrophage functions by bile acids.  相似文献   
94.
All oxygenic photosynthetically derived reducing equivalents are utilized by combinations of a single multifuctional electron carrier protein, ferredoxin (Fd), and several Fd-dependent oxidoreductases. We report the first crystal structure of the complex between maize leaf Fd and Fd-NADP(+) oxidoreductase (FNR). The redox centers in the complex--the 2Fe-2S cluster of Fd and flavin adenine dinucleotide (FAD) of FNR--are in close proximity; the shortest distance is 6.0 A. The intermolecular interactions in the complex are mainly electrostatic, occurring through salt bridges, and the interface near the prosthetic groups is hydrophobic. NMR experiments on the complex in solution confirmed the FNR recognition sites on Fd that are identified in the crystal structure. Interestingly, the structures of Fd and FNR in the complex and in the free state differ in several ways. For example, in the active site of FNR, Fd binding induces the formation of a new hydrogen bond between side chains of Glu 312 and Ser 96 of FNR. We propose that this type of molecular communication not only determines the optimal orientation of the two proteins for electron transfer, but also contributes to the modulation of the enzymatic properties of FNR.  相似文献   
95.
96.
To characterize the ability of bifidobacteria to affect the production of macrophage-derived cytokines, a murine macrophage-like cell line, J774.1, was cultured in the presence of 27 strains of heat-inactivated bifidobacteria. Bifidobacterium adolescentis and B. longum, known as adult-type bifidobacteria, induced significantly more pro-inflammatory cytokine secretion, IL-12 and TNF-alpha, by J774.1 cells, than did the infant-type bifidobacteria, B. bifidum, B. breve, and B. infantis (P<0.01). In contrast, B. adolescentis did not stimulate the production of anti-inflammatory IL-10 from J774.1 cells as the other tested bacteria did. The results suggest that the adult-type bifidobacteria, especially B. adolescentis, may be more potent to amplify but less able to down-regulate the inflammatory response.  相似文献   
97.
A method for determination of a molar-based distribution of A, B and C chains of amylopectin was developed. Labeling with fluorescent 2-aminopyridine was proportional to the number-average degree of polymerization (dp(n)) of the chains in the range of 6-440. Number-average chain lengths (cl(n)) of amylopectins from six different plant sources (rice, maize, wheat, potato, sweet potato and yam) determined by the labeling method were in good agreement with values obtained by determination of non-reducing residues. The molar-based distributions were polymodal (A, B(1) and B(2)+B(3) fractions) and characteristic to botanical sources. Amylopectins from starches with A-crystalline type had higher amount of A+B(1) chains (90-93% by mole) than starches with B-type (68-87%). Molar ratios of (A+B(1))/(B(2)+B(3)) were 8.9-12.9 for the A-type starches and 2.1-6.5 for the B-type starches, suggesting that amylopectins of A-type starches had 1.5-2 times more branches per cluster than B-type. The distributions of C chains, except for amylomaize, showed a broad, asymmetrical profile from dp approximately 10 to approximately 130 with a peak at dp approximately 40 and were very similar among botanical sources, suggesting that the biosynthetic process for C chains is similar in different plant species.  相似文献   
98.
We found previously that the peripheral CD4 T-cell populations of heavily exposed A-bomb survivors contained fewer na?ve T cells than we detected in the corresponding unexposed controls. To determine whether this demonstrable impairment of the CD4 T-cell immunity of A-bomb survivors was likely to affect the responsiveness of their immune systems to infection by common pathogens, we tested the T cells of 723 survivors for their ability to proliferate in vitro after a challenge by each of the Staphylococcus aureus toxins SEB, SEC-2, SEC-3, SEE and TSST-1. The results presented here reveal that the proliferative responses of T cells of A-bomb survivors became progressively weaker as the radiation dose increased and did so in a manner that correlated well with the decreasing CD45RA-positive (na?ve) [but not CD45RA-negative (memory)] CD4 T-cell percentages that we found in their peripheral blood lymphocyte (PBL) populations. We also noted that the T cells of survivors with a history of myocardial infarction tended to respond poorly to several (or even all) of the S. aureus toxins, and that these same individuals had proportionally fewer CD45RA-positive (na?ve) CD4 T cells in their PBL populations than we detected in survivors with no myocardial infarction in their history. Taken together, these results clearly indicate that A-bomb irradiation led to an impairment of the ability of exposed individuals to maintain their na?ve T-cell pools. This may explain why A-bomb survivors tend to respond poorly to toxins encoded by the common pathogenic bacterium S. aureus.  相似文献   
99.
Cell cycle checkpoints and apoptosis function as surveillance mechanisms in somatic tissues. However, some of these mechanisms are lacking or are restricted during the preimplantation stage. Previously, we reported the presence of a novel Trp53-dependent S-phase checkpoint that suppresses pronuclear DNA synthesis in mouse zygotes fertilized with X-irradiated sperm (sperm-irradiated zygotes) (Shimura et al., Mol. Cell. Biol. 22, 2220-2228, 2002). Here we studied the role of the Trp53-dependent S-phase checkpoint in the early stage of development of sperm-irradiated zygotes. In the Trp53(+/+) genetic background, all of the sperm-irradiated zygotes cleaved successfully to the two-cell stage despite the fact that half of them carried a sub-2N amount of DNA. These zygotes progressed normally to the eight-cell stage and then implanted, but the subsequent fetal development was suppressed in a dose-dependent manner. In contrast, sperm-irradiated Trp53(-/-) embryos lacking an S-phase checkpoint exhibited an abnormal segregation of chromosomes at the first cleavage, even though they carried an apparently normal 2N amount of DNA. They were morphologically abnormal with numerous micronuclei, and they degenerated before reaching the eight-cell stage. As a consequence, no implants were observed for sperm-irradiated Trp53(-/-) embryos. These results suggest that the Trp53-dependent S-phase checkpoint is a surveillance mechanism involved in the repair of chromosome damage and ensures the preimplantation-stage development of sperm-irradiated embryos.  相似文献   
100.
Tom7 is a component of the translocase of the outer mitochondrial membrane (TOM) and assembles into a general import pore complex that translocates preproteins into mitochondria. We have identified the human Tom7 homolog and characterized its import and assembly into the mammalian TOM complex. Tom7 is imported into mitochondria in a nucleotide-independent manner and is anchored to the outer membrane with its C terminus facing the intermembrane space. Unlike studies in fungi, we found that human Tom7 assembles into an approximately 120-kDa import intermediate in HeLa cell mitochondria. To detect subunits within this complex, we employed a novel supershift analysis whereby mitochondria containing newly imported Tom7 were incubated with antibodies specific for individual TOM components prior to separation by blue native electrophoresis. We found that the 120-kDa complex contains Tom40 and lacks receptor components. This intermediate can be chased to the stable approximately 380-kDa mammalian TOM complex that additionally contains Tom22. Overexpression of Tom22 in HeLa cells results in the rapid assembly of Tom7 into the 380-kDa complex indicating that Tom22 is rate-limiting for TOM complex formation. These results indicate that the levels of Tom22 within mitochondria dictate the assembly of TOM complexes and hence may regulate its biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号