首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   941篇
  免费   56篇
  2022年   5篇
  2021年   17篇
  2020年   4篇
  2019年   12篇
  2018年   16篇
  2017年   7篇
  2016年   21篇
  2015年   34篇
  2014年   44篇
  2013年   59篇
  2012年   60篇
  2011年   66篇
  2010年   40篇
  2009年   27篇
  2008年   58篇
  2007年   49篇
  2006年   76篇
  2005年   63篇
  2004年   57篇
  2003年   64篇
  2002年   50篇
  2001年   5篇
  2000年   5篇
  1999年   8篇
  1998年   11篇
  1997年   6篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   8篇
  1982年   9篇
  1981年   6篇
  1980年   13篇
  1979年   4篇
  1978年   8篇
  1977年   4篇
  1975年   4篇
  1973年   4篇
  1962年   1篇
  1950年   1篇
排序方式: 共有997条查询结果,搜索用时 281 毫秒
121.
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies directed against the desmosomal cadherin desmoglein-3 (Dsg3). Significant advances in our understanding of pemphigus pathomechanisms have been derived from the generation of pathogenic monoclonal Dsg3 antibodies. However, conflicting models for pemphigus pathogenicity have arisen from studies using either polyclonal PV patient IgG or monoclonal Dsg3 antibodies. In the present study, the pathogenic mechanisms of polyclonal PV IgG and monoclonal Dsg3 antibodies were directly compared. Polyclonal PV IgG cause extensive clustering and endocytosis of keratinocyte cell surface Dsg3, whereas pathogenic mouse monoclonal antibodies compromise cell-cell adhesion strength without causing these alterations in Dsg3 trafficking. Furthermore, tyrosine kinase or p38 MAPK inhibition prevents loss of keratinocyte adhesion in response to polyclonal PV IgG. In contrast, disruption of adhesion by pathogenic monoclonal antibodies is not prevented by these inhibitors either in vitro or in human skin explants. Our results reveal that the pathogenic activity of polyclonal PV IgG can be attributed to p38 MAPK-dependent clustering and endocytosis of Dsg3, whereas pathogenic monoclonal Dsg3 antibodies can function independently of this pathway. These findings have important implications for understanding pemphigus pathophysiology, and for the design of pemphigus model systems and therapeutic interventions.  相似文献   
122.
Several clinical studies have shown that insulin resistance is prevalent among patients with heart failure, but the underlying mechanisms have not been fully elucidated. Here, we report a mechanism of insulin resistance associated with heart failure that involves upregulation of p53 in adipose tissue. We found that pressure overload markedly upregulated p53 expression in adipose tissue along with an increase of adipose tissue inflammation. Chronic pressure overload accelerated lipolysis in adipose tissue. In the presence of pressure overload, inhibition of lipolysis by sympathetic denervation significantly downregulated adipose p53 expression and inflammation, thereby improving insulin resistance. Likewise, disruption of p53 activation in adipose tissue attenuated inflammation and improved insulin resistance but also ameliorated cardiac dysfunction induced by chronic pressure overload. These results indicate that chronic pressure overload upregulates adipose tissue p53 by promoting lipolysis via the sympathetic nervous system, leading to an inflammatory response of adipose tissue and insulin resistance.  相似文献   
123.
124.
Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitu­tion technique. The effects of the Ca2+, ATP, phos­phate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were com­pared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower T HC (high Ca2+ ten­sion at pCa 4.66) (E40K: 1.21±0.06 T a, ±SEM, N = 34; E54K: 1.24±0.07 T a, N = 28), a significantly lower T LC (low- Ca2+ tension at pCa 7.0) (E40K: 0.07±0.02 T a, N = 34; E54K: 0.06±0.02 T a, N = 28), and a significantly lower T act (Ca2+ activatable tension) (T act = T HC–TLC, E40K: 1.15±0.08 T a, N = 34; E54K: 1.18±0.06 T a, N = 28) than WT (T HC = 1.53±0.07 T a, T LC = 0.12±0.01 T a, T act = 1.40±0.07 T a, N = 25). All tensions were normalized to T a ( = 13.9±0.8 kPa, N = 57), the ten­sion of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca2+ sensitivity (pCa50) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooper­a­tivity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.  相似文献   
125.
Clostridium perfringens alpha-toxin induces the hemolysis of sheep erythrocytes by activating the metabolism of sphingomyelin (SM) via a GTP binding protein in membranes. alpha-Toxin stimulated the formation of 15-N-nervonoyl sphingosine (C24:1-ceramide), which was identified by positive ion fast atom bombardment-MS and 1H-NMR spectroscopy. C24:1-ceramide stimulated the toxin-induced hemolysis of saponin-pretreated sheep erythrocytes and increased the production of sphingosine 1-phosphate (S1P) in the cells, but N-lignoceroyl sphingosine did not. These events elicited by the toxin in the presence of C24:1-ceramide were significantly attenuated by treatment with dihydrosphingosine, a sphingosine kinase inhibitor. TLC showed that the level of C24:1-ceramide was highest among the ceramides with an unsaturated bond in the fatty acyl chain in the detergent-resistant membranes (DRMs). The toxin specifically bound to DRMs rich in cholesterol, resulting in the hydrolysis of N-nervonoic sphingomyelin (C24:1-SM) in DRMs. Treatment of the cells with pertussis toxin (PT) inhibited the alpha-toxin-induced formation of C24:1-ceramide from C24:1-SM in DRMs and hemolysis, indicating that endogenous sphingomyelinase, which hydrolyzes C24:1-SM to C24:1-ceramide, is controlled by PT-sensitive GTP binding protein in membranes. These results show that the toxin-induced metabolism of C24:1-SM to S1P in DRMs plays an important role in the toxin-induced hemolysis of sheep erythrocytes.  相似文献   
126.
Autoreactive T cells are thought to be involved in the pathogenesis of autoimmune diseases, but evidence for their direct pathogenicity is almost lacking. Herein we established a unique system for evaluating the in vivo pathogenicity of desmoglein 3 (Dsg3)-reactive T cells at a clonal level in a mouse model for pemphigus vulgaris (PV), an autoimmune blistering disease induced by anti-Dsg3 autoantibodies. Dsg3-reactive CD4(+) T cell lines generated in vitro were adoptively transferred into Rag-2(-/-) mice with primed B cells derived from Dsg3-immunized Dsg3(-/-) mice. Seven of 20 T cell lines induced IgG anti-Dsg3 Ab production and acantholytic blister, a typical disease phenotype, in recipient mice. Comparison of the characteristics between pathogenic and nonpathogenic Dsg3-reactive T cell lines led to the identification of IL-4 and IL-10 as potential factors associated with pathogenicity. Further in vitro analysis showed that IL-4, but not IL-10, promoted IgG anti-Dsg3 Ab production by primed B cells. Additionally, adenoviral expression of soluble IL-4Ralpha in vivo suppressed IgG anti-Dsg3 Ab production and the PV phenotype, indicating a pathogenic role of IL-4. This strategy is useful for evaluating the effector function of autoreactive T cells involved in the pathogenesis of various autoimmune diseases.  相似文献   
127.
PGD(2) is the major prostanoid produced during the acute phase of allergic reactions. Two PGD(2) receptors have been isolated, DP and CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells), but whether they participate in the pathophysiology of allergic diseases remains unclear. We investigated the role of CRTH2 in the initiation of allergic rhinitis in mice. First, we developed a novel murine model of pollinosis, a type of seasonal allergic rhinitis. Additionally, pathophysiological differences in the pollinosis were compared between wild-type and CRTH2 gene-deficient mice. An effect of treatment with ramatroban, a CRTH2/T-prostanoid receptor dual antagonist, was also determined. Repeated intranasal sensitization with Cry j 1, the major allergen of Cryptomeria japonica pollen, in the absence of adjuvants significantly exacerbated nasal hyperresponsive symptoms, Cry j 1-specific IgE and IgG1 production, nasal eosinophilia, and Cry j 1-induced in vitro production of IL-4 and IL-5 by submandibular lymph node cells. Additionally, CRTH2 mRNA in nasal mucosa was significantly elevated in Cry j 1-sensitized mice. Following repeated intranasal sensitization with Cry j 1, CRTH2 gene-deficient mice had significantly weaker Cry j 1-specific IgE/IgG1 production, nasal eosinophilia, and IL-4 production by submandibular lymph node cells than did wild-type mice. Similar results were found in mice treated with ramatroban. These results suggest that the PGD(2)-CRTH2 interaction is elevated following sensitization and plays a proinflammatory role in the pathophysiology of allergic rhinitis, especially pollinosis in mice.  相似文献   
128.
Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.  相似文献   
129.
Prostaglandin (PG)E derivatives are widely used for treating gastric mucosal injury. PGE receptors are classified into four subtypes, EP(1), EP(2), EP(3), and EP(4). We have tested which EP receptor subtypes participate in gastric mucosal protection against ethanol-induced gastric mucosal injury and clarified the mechanisms of such protection. The gastric mucosa of anesthetized rats was perfused at 2 ml/min with physiological saline, agonists for EP(1), EP(2), EP(3), and EP(4), or 50% ethanol, using a constant-rate pump connected to a cannula placed in the esophagus. The gastric microcirculation of the mucosal base of anesthetized rats was observed by transillumination through a window made by removal of the adventitia and muscularis externa. PGE(2) and subtype-specific EP agonists were applied to the muscularis mucosae at the window. Application of 50% ethanol dilated the mucosal arterioles and constricted the collecting venules. Collecting venule constriction by ethanol was completely inhibited by PGE(2) and by EP(2) and EP(4) agonists (100 nM) but not by an EP(1) or an EP(3) agonist. Ethanol-induced mucosal injury was also inhibited by EP(2) and EP(4) agonists. When leukotriene (LT)C(4) levels in the perfusate of the gastric mucosa were determined by ELISA, intragastric ethanol administration elevated the LTC(4) levels sixfold from the basal levels. These elevated levels were significantly (60%) reduced by both EP(2) and EP(4) agonists but not by other EP agonists. Since LTC(4) application at the window constricted collecting venules strongly, and an LTC antagonist reduced ethanol-induced mucosal injury, reductions in LTC(4) generation in response to EP(2) and EP(4) receptor signaling may be relevant to the protective action of PGE(2). The present results indicate that EP(2) and EP(4) receptor signaling inhibits ethanol-induced gastric mucosal injury through cancellation of collecting venule constriction by reducing LTC(4) production.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号