全文获取类型
收费全文 | 441篇 |
免费 | 31篇 |
专业分类
472篇 |
出版年
2022年 | 6篇 |
2021年 | 6篇 |
2020年 | 3篇 |
2019年 | 5篇 |
2018年 | 7篇 |
2017年 | 5篇 |
2016年 | 7篇 |
2015年 | 10篇 |
2014年 | 16篇 |
2013年 | 25篇 |
2012年 | 25篇 |
2011年 | 18篇 |
2010年 | 15篇 |
2009年 | 21篇 |
2008年 | 27篇 |
2007年 | 18篇 |
2006年 | 31篇 |
2005年 | 20篇 |
2004年 | 27篇 |
2003年 | 25篇 |
2002年 | 20篇 |
2001年 | 14篇 |
2000年 | 15篇 |
1999年 | 10篇 |
1998年 | 5篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 4篇 |
1990年 | 8篇 |
1989年 | 3篇 |
1988年 | 9篇 |
1987年 | 4篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 4篇 |
1982年 | 2篇 |
1980年 | 3篇 |
1979年 | 5篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 3篇 |
1975年 | 3篇 |
1974年 | 4篇 |
1972年 | 1篇 |
1969年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有472条查询结果,搜索用时 15 毫秒
51.
The target of rapamycin complex 2 controls dendritic tiling of Drosophila sensory neurons through the Tricornered kinase signalling pathway 下载免费PDF全文
Makiko Koike‐Kumagai Kei‐ichiro Yasunaga Rei Morikawa Takahiro Kanamori Kazuo Emoto 《The EMBO journal》2009,28(24):3879-3892
To cover the receptive field completely and non‐redundantly, neurons of certain functional groups arrange tiling of their dendrites. In Drosophila class IV dendrite arborization (da) neurons, the NDR family kinase Tricornered (Trc) is required for homotypic repulsion of dendrites that facilitates dendritic tiling. We here report that Sin1, Rictor, and target of rapamycin (TOR), components of the TOR complex 2 (TORC2), are required for dendritic tiling of class IV da neurons. Similar to trc mutants, dendrites of sin1 and rictor mutants show inappropriate overlap of the dendritic fields. TORC2 components physically and genetically interact with Trc, consistent with a shared role in regulating dendritic tiling. Moreover, TORC2 is essential for Trc phosphorylation on a residue that is critical for Trc activity in vivo and in vitro. Remarkably, neuronal expression of a dominant active form of Trc rescues the tiling defects in sin1 and rictor mutants. These findings suggest that TORC2 likely acts together with the Trc signalling pathway to regulate the dendritic tiling of class IV da neurons, and thus uncover the first neuronal function of TORC2 in vivo. 相似文献
52.
53.
E. Wada R. Imaizumi Y. Kabaya T. Yasuda T. Kanamori G. Saito A. Nishimune 《Plant and Soil》1986,93(2):269-286
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental
field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in
Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method.
Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics,
and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species.
The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans
growing in agricultural settings. 相似文献
54.
Rieko Imae Takao Inoue Masako Kimura Takahiro Kanamori Naoko H. Tomioka Eriko Kage-Nakadai Shohei Mitani Hiroyuki Arai 《Molecular biology of the cell》2010,21(18):3114-3124
Phosphatidylinositol (PI), an important constituent of membranes, contains stearic acid as the major fatty acid at the sn-1 position. This fatty acid is thought to be incorporated into PI through fatty acid remodeling by sequential deacylation and reacylation. However, the genes responsible for the reaction are unknown, and consequently, the physiological significance of the sn-1 fatty acid remains to be elucidated. Here, we identified acl-8, -9, and -10, which are closely related to each other, and ipla-1 as strong candidates for genes involved in fatty acid remodeling at the sn-1 position of PI. In both ipla-1 mutants and acl-8 acl-9 acl-10 triple mutants of Caenorhabditis elegans, the stearic acid content of PI is reduced, and asymmetric division of stem cell-like epithelial cells is defective. The defects in asymmetric division of these mutants are suppressed by a mutation of the same genes involved in intracellular retrograde transport, suggesting that ipla-1 and acl genes act in the same pathway. IPLA-1 and ACL-10 have phospholipase A1 and acyltransferase activity, respectively, both of which recognize the sn-1 position of PI as their substrate. We propose that the sn-1 fatty acid of PI is determined by ipla-1 and acl-8, -9, -10 and crucial for asymmetric divisions. 相似文献
55.
Manabu Konishi Masaomi Kanbe Jonathan L. McMurry Shin-Ichi Aizawa 《Journal of bacteriology》2009,191(19):6186-6191
The flagellar cytoplasmic ring (C ring), which consists of three proteins, FliG, FliM, and FliN, is located on the cytoplasmic side of the flagellum. The C ring is a multifunctional structure necessary for flagellar protein secretion, torque generation, and switching of the rotational direction of the motor. The deletion of any one of the fliG, fliM, and fliN genes results in a Fla− phenotype. Here, we show that the overproduction of the flagellum-specific ATPase FliI overcomes the inability of basal bodies with partial C-ring structures to produce complete flagella. Flagella made upon FliI overproduction were paralyzed, indicating that an intact C ring is essential for motor function. In FliN- or FliM-deficient mutants, flagellum production was about 10% of the wild-type level, while it was only a few percent in FliG-deficient mutants, suggesting that the size of partial C rings affects the extent of flagellation. For flagella made in C-ring mutants, the hook length varied considerably, with many being markedly shorter or longer than that of the wild type. The broad distribution of hook lengths suggests that defective C rings cannot control the hook length as tightly as the wild type even though FliK and FlhB are both intact.The flagellum is the ultrastructure for motility in many bacterial species (1). Flagellar assembly requires about 50 genes, among which about 20 gene products are incorporated in the complete flagellum (12). Most structural proteins and others necessary for assembly are exported through a flagellum-specific type III secretion apparatus housed within the basal body. The apparatus consists of at least six integral membrane proteins: FlhA, FlhB, FliP, FliQ, FliR, and FliO (for salmonellae and other species) (1, 12). Other proteins are also involved. FliI is the only known ATPase among flagellar proteins (2). FliI interacts with FliJ, which is of unknown function, and with a dimer of FliH, an inhibitor of FliI. The apparatus can be visualized by quick-freeze electron microscopy and has been termed the C (cytoplasmic) rod by virtue of its appearance and membrane-proximal location inside the C ring (7). The C ring is composed of three component proteins: FliG, FliM, and FliN (3). Mutations or deletions of any of these proteins cause a nonflagellate (Fla−) phenotype, strongly suggesting that the C ring is necessary for flagellar protein export (6, 22, 26). The trimer FliH2-FliI specifically binds FliN (4, 15), suggesting that FliI docks at the periphery of the C ring through interactions with FliN-bound FliH, standing ready to escort export substrates to the secretion gate that is probably composed by FlhA, FlhB, and others (15).The C ring has long been studied with respect to motor function rather than export function. It has been proposed that FliG plays a major role in torque generation in concert with MotAB complexes, leaving the other two proteins, FliM and FliN, in minor and supporting roles (10, 11). However, as mentioned above, all three components are required for flagellar protein export (6, 22, 26). Together with the C ring, FliI pushes export substrates into the gate using the energy of ATP hydrolysis. Just recently, it was shown that FliI ATPase activity is not absolutely necessary for protein export and that increasing proton motive force (PMF) or reversion mutations in FlhA and FlhB can compensate for its absence (17, 21).In order to elucidate the roles that FliG, FliM, and FliN play in export, we employed C-ring-defective mutants. Here, we show that the overproduction of FliI allows flagellar formation in C-ring-defective mutants. We closely examined flagella formed in those mutants by electron microscopy, noting percentages of flagellation in each population, analyzing partially formed structures, and measuring hook length. 相似文献
56.
Kodama Y Reese ML Shimba N Ono K Kanamori E Dötsch V Noguchi S Fukunishi Y Suzuki E Shimada I Takahashi H 《Journal of structural biology》2011,174(3):434-442
Protein-protein interactions are necessary for various cellular processes, and therefore, information related to protein-protein interactions and structural information of complexes is invaluable. To identify protein-protein interfaces using NMR, resonance assignments are generally necessary to analyze the data; however, they are time consuming to collect, especially for large proteins. In this paper, we present a rapid, effective, and unbiased approach for the identification of a protein-protein interface without resonance assignments. This approach requires only a single set of 2D titration experiments of a single protein sample, labeled with a unique combination of an (15)N-labeled amino acid and several amino acids (13)C-labeled on specific atoms. To rapidly obtain high resolution data, we applied a new pulse sequence for time-shared NMR measurements that allowed simultaneous detection of a ω(1)-TROSY-type backbone (1)H-(15)N and aromatic (1)H-(13)C shift correlations together with single quantum methyl (1)H-(13)C shift correlations. We developed a structure-based computational approach, that uses our experimental data to search the protein surfaces in an unbiased manner to identify the residues involved in the protein-protein interface. Finally, we demonstrated that the obtained information of the molecular interface could be directly leveraged to support protein-protein docking studies. Such rapid construction of a complex model provides valuable information and enables more efficient biochemical characterization of a protein-protein complex, for instance, as the first step in structure-guided drug development. 相似文献
57.
Population Ecology - Here we considered two fundamental questions in community ecology regarding the relationship between seasonal changes in community structure and environmental gradients: (i)... 相似文献
58.
Hiroshi Sato Hiroshi Mochizuki Yuki Tomita Toshio Izako Naofumi Sato Toshinori Kanamori 《Luminescence》1996,11(1):23-29
We have compared three competitive chemiluminescent immunoassays (CLIA) for estradiol (E2) using an N-functionalized acridinium ester (AE). The assays were a standard competitive assay using immobilized antibody and directly labeled antigen (type A), an immobilized antibody and indirectly labeled antigen (type B), and an immobilized antigen and labeled antibody (type C). In an antibody-immobilized system, the assay using both AE- and E2-labeled thyroglobulin as a tracer (type B) was more sensitive than that using AE directly coupled with E2 (type A). Subsequently, a comparison of the antibody-immobilized system (type B) and an antigen-immobilized system (type C) showed that the latter was slightly more sensitive than the former. The sensitivity of the CLIA (type C) was similar or superior to commercially available CLIA or radioimmunoassays for E2. Thus, the N-functionalized AE proved to be a useful labeling reagent for a competitive CLIA with high sensitivity. 相似文献
59.
Kinetics of glial glutamine (GLN) transport to the extracellular fluid (ECF) and the mechanism of GLN(ECF) transport into the neuron--crucial pathways in the glutamine-glutamate cycle--were studied in vivo in mildly hyperammonemic rat brain, by NMR and microdialysis to monitor intra- and extracellular GLN. The minimum rate of glial GLN efflux, determined from the rate of GLN(ECF) increase during perfusion of alpha-(methylamino)isobutyrate (MeAIB), which inhibits neuronal GLN(ECF) uptake by sodium-coupled amino-acid transporter (SAT), was 2.88 +/- 0.22 micromol/g/h at steady-state brain [GLN] of 8.5 +/- 0.8 micromol/g. Our previous study showed that the rate of glutamine synthesis under identical experimental conditions was 3.3 +/- 0.3 micromol/g/h. At steady-state glial [GLN], this is equal to its efflux rate to the ECF. Comparison of the two rates suggests that SAT mediates at least 87 +/- 8% (= 2.88/3.3 x 100%) of neuronal GLN(ECF) uptake. While MeAIB induced > 2-fold elevation of GLN(ECF), no sustained elevation was observed during perfusion of the selective inhibitor of LAT, 2-amino-bicyclo[1,1,2]heptane-2-carboxylic acid (BCH), or of d-threonine, a putative selective inhibitor of ASCT2-mediated GLN uptake. The results strongly suggest that SAT is the predominant mediator of neuronal GLN(ECF) uptake in adult rat brain in vivo. 相似文献
60.
Yuki Kawai Takeshi Kikuchi Yasumasa Mitani Yasushi Kogo Masayoshi Itoh Kengo Usui Hajime Kanamori Ai Kaiho Hideki Takakura Kanako Hoshi Paul E Cizdziel Yoshihide Hayashizaki 《Biologicals》2008,36(4):234-238
In a previous study, a single nucleotide polymorphism (SNP) diagnostic system named the SMart Amplification Process version 2 (SMAP 2) was reported, which enabled rapid gene diagnostics from crude samples such as whole blood. The asymmetric primer design and use of Taq MutS were reported as innovative background suppression technologies employed by SMAP 2, but Taq MutS is known to display differential affinities for various mismatch combinations, and hence may not be entirely effective for all possible applications. To address this issue we developed another approach using a competitive probe (CP) to enhance background suppression technology instead of Taq MutS. CP is a 3'-end aminated oligonucleotide that competes with 3'-end of a discrimination primer or the self-priming elongation site on intermediate product 2 (IM2) for non-target sequences, such as the alternative allele. The preferred hybridization kinetics for the full-match CP on the non-target sequence results in effective background suppression in SMAP 2 assays. By using a CP, we demonstrated the sensitive detection of EGFR gene mutations in purified genomic DNA from mixed cell populations. The CP approach is another tool enhancing the effectiveness and versatility of SMAP 2 assays, expanding its potential applications, and reinforcing its position as a highly effective technology for molecular diagnostics. 相似文献