首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2170篇
  免费   105篇
  2023年   4篇
  2022年   16篇
  2021年   21篇
  2020年   9篇
  2019年   14篇
  2018年   32篇
  2017年   20篇
  2016年   44篇
  2015年   79篇
  2014年   76篇
  2013年   124篇
  2012年   146篇
  2011年   152篇
  2010年   93篇
  2009年   96篇
  2008年   159篇
  2007年   151篇
  2006年   133篇
  2005年   150篇
  2004年   136篇
  2003年   142篇
  2002年   125篇
  2001年   22篇
  2000年   18篇
  1999年   27篇
  1998年   29篇
  1997年   28篇
  1996年   29篇
  1995年   32篇
  1994年   11篇
  1993年   19篇
  1992年   22篇
  1991年   12篇
  1990年   12篇
  1989年   10篇
  1988年   11篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1977年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
排序方式: 共有2275条查询结果,搜索用时 203 毫秒
991.
992.
The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.  相似文献   
993.
994.
Species of the genus Colocasiomyia de Meijere feed/breed on inflorescences/infructescences of the plants from the families Araceae, Arecaceae and Magnoliaceae. Although most of them utilize plants from the subfamily Aroideae of Araceae, three species of the recently established C. gigantea species group make use of plants of the subfamily Monsteroideae. We describe four new species of the gigantea group found from Yunnan, China: Colocasiomyia longifilamentata Li & Gao, sp. n., C. longivalva Li & Gao, sp. n., C. hailini Li & Gao, sp. n., and C. yini Li & Gao, sp. n. The species delimitation is proved in virtue of not only morphology but also DNA barcodes, i.e., sequences of the partial mitochondrial COI (cytochrome c oxidase subunit I) gene. Some nucleotide sites with fixed status in the alignment of the COI sequences (658 sites in length) are used as “pure” molecular diagnostic characters to delineate species in the gigantea group.  相似文献   
995.
Small RNAs mediate gene silencing by binding Argonaute/Piwi proteins to regulate target RNAs. Here, we describe small RNA profiling of the adult testes of Callithrix jacchus, the common marmoset. The most abundant class of small RNAs in the adult testis was piRNAs, although 353 novel miRNAs but few endo-siRNAs were also identified. MARWI, a marmoset homolog of mouse MIWI and a very abundant PIWI in adult testes, associates with piRNAs that show characteristics of mouse pachytene piRNAs. As in other mammals, most marmoset piRNAs are derived from conserved clustered regions in the genome, which are annotated as intergenic regions. However, unlike in mice, marmoset piRNA clusters are also found on the X chromosome, suggesting escape from meiotic sex chromosome inactivation by the X-linked clusters. Some of the piRNA clusters identified contain antisense-orientated pseudogenes, suggesting the possibility that pseudogene-derived piRNAs may regulate parental functional protein-coding genes. More piRNAs map to transposable element (TE) subfamilies when they have copies in piRNA clusters. In addition, the strand bias observed for piRNAs mapped to each TE subfamily correlates with the polarity of copies inserted in clusters. These findings suggest that pachytene piRNA clusters determine the abundance and strand-bias of TE-derived piRNAs, may regulate protein-coding genes via pseudogene-derived piRNAs, and may even play roles in meiosis in the adult marmoset testis.  相似文献   
996.
Peroxisomes are subcellular organelles that function in multiple anabolic and catabolic processes, including β-oxidation of very-long-chain fatty acids (VLCFA) and biosynthesis of ether phospholipids. Peroxisomal disorders caused by defects in peroxisome biogenesis or peroxisomal β-oxidation manifest as severe neural disorders of the central nervous system. Abnormal peroxisomal metabolism is thought to be responsible for the clinical symptoms of these diseases, but their molecular pathogenesis remains to be elucidated. We performed lipidomic analysis to identify aberrant metabolites in fibroblasts from patients with Zellweger syndrome (ZS), acyl-CoA oxidase1 (AOx) deficiency, D-bifunctional protein (D-BP) and X-linked adrenoleukodystrophy (X-ALD), as well as in peroxisome-deficient Chinese hamster ovary cell mutants. In cells deficient in peroxisomal biogenesis, plasmenylethanolamine was remarkably reduced and phosphatidylethanolamine was increased. Marked accumulation of very-long-chain saturated fatty acid and monounsaturated fatty acids in phosphatidylcholine was observed in all mutant cells. Very-long-chain polyunsaturated fatty acid (VLC-PUFA) levels were significantly elevated, whilst phospholipids containing docosahexaenoic acid (DHA, C22:6n-3) were reduced in fibroblasts from patients with ZS, AOx deficiency, and D-BP deficiency, but not in fibroblasts from an X-ALD patient. Because patients with AOx deficiency suffer from more severe symptoms than those with X-ALD, accumulation of VLC-PUFA and/or reduction of DHA may be associated with the severity of peroxisomal diseases.  相似文献   
997.
Retinoic acid is a widely used factor in both mouse and human embryonic stem cells. It suppresses differentiation to mesoderm and enhances differentiation to ectoderm. Fibroblast growth factor 2 (FGF2) is widely used to induce differentiation to neurons in mice, yet in primates, including humans, it maintains embryonic stem cells in the undifferentiated state. In this study, we established an FGF2 low-dose-dependent embryonic stem cell line from cynomolgus monkeys and then analyzed neural differentiation in cultures supplemented with retinoic acid and FGF2. When only retinoic acid was added to culture, neurons differentiated from FGF2 low-dose-dependent embryonic stem cells. When both retinoic acid and FGF2 were added, neurons and astrocytes differentiated from the same embryonic stem cell line. Thus, retinoic acid promotes the differentiation from embryonic stem cells to neuroectoderm. Although FGF2 seems to promote self-renewal in stem cells, its effects on the differentiation of stem cells are influenced by the presence or absence of supplemental retinoic acid.Abbreviations: EB, embryoid body; ES, embryonic stem; ESM, embryonic stem cell medium; FGF, fibroblast growth factor; GFAP, glial fibrillary acidic protein; LIF, leukemia inhibitory factor; MBP, myelin basic protein; RA, retinoic acid; SSEA, stage-specific embryonic antigen; TRA, tumor-related antigenPluripotent stem cells are potential sources of material for cell replacement therapy and are useful experimental tools for in vitro models of human disease and drug screening. Embryonic stem (ES) cells are capable of extensive proliferation and multilineage differentiation, and thus ES-derived cells are suitable for use in cell-replacement therapies.18,23 Reported ES cell characteristics including tumorigenic potential, DNA methylation status, expression of imprinted genes, and chromatin structure were elucidated by using induced pluripotent stem cells.2,11,17 Because the social expectations of regeneration medicine are growing, we must perform basic research with ES cells, which differ from induced pluripotent stem cells in terms of origin, differentiation ability, and epigenetic status.2,8Several advances in research have been made by using mouse ES cells. Furthermore, primate ES cell lines have been established from rhesus monkeys (Macaca mulatta),24 common marmosets (Callithrix jacchus),25 cynomolgus monkeys (M. fascicularis),20 and African green monkeys (Chlorocebus aethiops).19 Mouse and other mammalian ES cells differ markedly in their responses to the signaling pathways that support self-renewal.8,28 Mouse ES cells require leukemia inhibitory factor (LIF)–STAT3 signaling.14 In contrast, primate ES cells do not respond to LIF. Fibroblast growth factor 2 (FGF2) appears to be the most upstream self-renewal factor in primate ES cells. FGF2 also exerts its effects through indirect mechanisms, such as the TGFβ–Activin–Nodal signaling pathway, in primate ES cells.21 In addition to the biologic similarities between monkeys and humans, ES cells derived from cynomolgus monkeys or human blastocysts have extensive similarities that are not apparent in mouse ES cells.8,14,21,28 Numerous monkey ES cell lines are now available, and cynomolgus monkeys are an efficient model for developing strategies to investigate the efficacy of ES-cell–based medical treatments in humans.Several growth factors and chemical compounds, including retinoic acid (RA),4,9,13,22,26 FGF2,9,10,16,22 epidermal growth factor,9,22 SB431542,1,4,10 dorsomorphin,10,27 sonic hedgehog,12,13,16,27,29 and noggin,1,4,9,27 are essential for the differentiation and proliferation or maintenance of neural stem cells derived from primate ES cells. Of these factors, active RA signaling suppresses a mesodermal fate by inhibiting Wnt and Nodal signaling pathways during in vitro culture and leads to neuroectoderm differentiation in ES cells.4,13,26 RA is an indispensable factor for the specialization to neural cells. FGF2 is important during nervous system development,12 and FGF2 and RA both are believed to influence the differentiation to neural cells. The current study was done to clarify the mechanism of RA and FGF2 in the induction of differentiation along the neural lineage.We recently established a monkey ES cell line that does not need FGF2 supplementation for maintenance of the undifferentiated state. This ES cell line allowed us to study the role of differentiation to neural cells with RA and enabled us to compare ES cell differentiation in the context of supplementation with RA or FGF2 in culture. To this end, we established a novel cynomolgus monkey cell line derived from ES cells and maintained it in an undifferentiated state in the absence of FGF2 supplementation.  相似文献   
998.
Kawakami K  Imanaka K  Itoh M  Taira M 《Gene》2004,338(1):93-98
The Tol2 transposable element from the medaka fish belong to the hAT family of transposons. In the previous studies, we have identified an autonomous member of this element, which encodes a fully functional transposase, and have shown that it can catalyze transposition in the zebrafish germ lineage. To date, the Tol2 element is the only natural transposon in vertebrates from which an autonomous member has been identified. We report here transposase-dependent excision of the Tol2 element in Xenopus laevis and Xenopus (Silurana) tropicalis embryos. We coinjected a plasmid DNA containing a nonautonomous Tol2 element and the transposase mRNA synthesized in vitro into two-cell-stage embryos, and analyzed DNA extracted from the injected embryos by polymerase chain reaction (PCR). We demonstrated that the Tol2 element could be excised from the plasmid DNA in both X. laevis and X. tropicalis only when it was coinjected with the transposase mRNA. In most cases, a complete loss of the Tol2 sequence was accompanied by addition of a short DNA sequence to the target sequence, indicating that transposase-dependent excision occurred. While these footprints were characteristic to those created upon excision of transposons of the hAT family, the additional bases found in Xenopus were longer and their structures were more complicated than those detected upon excision in zebrafish. This may reflect differences in the activities of host factors involved in either transposition, repair, or both between fish and frog. Our present study suggests that the Tol2 transposon system should be used as a novel genetic tool to develop transgenesis and mutagenesis methods in Xenopus.  相似文献   
999.
The inwardly rectifying potassium channel (Kir) regulates resting membrane potential, K+ homeostasis, heart rate, and hormone secretion. The outward current is blocked in a voltage-dependent manner, upon the binding of intracellular polyamines or Mg2+ to the transmembrane pore domain. Meanwhile, electrophysiological studies have shown that mutations of several acidic residues in the intracellular regions affected the inward rectification. Although these acidic residues are assumed to bind polyamines, the functional role of the binding of polyamines and Mg2+ to the intracellular regions of Kirs remains unclear. Here, we report thermodynamic and structural studies of the interaction between polyamines and the cytoplasmic pore of mouse Kir3.1/GIRK1, which is gated by binding of G-protein βγ-subunit (Gβγ). ITC analyses showed that two spermine molecules bind to a tetramer of Kir3.1/GIRK1 with a dissociation constant of 26 μm, which is lower than other blockers. NMR analyses revealed that the spermine binding site is Asp-260 and its surrounding area. Small but significant chemical shift perturbations upon spermine binding were observed in the subunit-subunit interface of the tetramer, suggesting that spermine binding alters the relative orientations of the four subunits. Our ITC and NMR results postulated a spermine binding mode, where one spermine molecule bridges two Asp-260 side chains from adjacent subunits, with rearrangement of the subunit orientations. This suggests the functional roles of spermine binding to the cytoplasmic pore: stabilization of the resting state conformation of the channel, and instant translocation to the transmembrane pore upon activation through the Gβγ-induced conformational rearrangement.The inwardly rectifying K+ channel (Kir)3 plays a pivotal role in controlling resting membrane potential, K+ homeostasis, heart rate, and hormone secretion (1). The inward rectification property of Kir is reportedly due to the voltage-dependent blockade of the outward current by intracellular polyamines and Mg2+ (26). The importance of the electrostatic interactions of polyamines and Mg2+ with the acidic residues in Kirs has been indicated by electrophysiological studies in combination with site-directed mutagenesis, which have been accelerated by the recent progress in the structural analyses of Kirs (710). The crystal structures revealed that they form a symmetric tetramer, in which the transmembrane pore, containing the K+-selective filter and the cytoplasmic pore consisting of the N- and C-terminal regions form a long pore for the K+ pathway.In Kir2.1/IRK1, the strongest inward rectifier in the Kir family, negatively charged acidic residues that influence the inward rectification have been identified, including Asp-172 (11) in the transmembrane pore and Glu-224, Asp-255, Asp-259, and Glu-299 in the cytoplasmic pore (9, 1219). These acidic residues are assumed to be responsible for the electrostatic interaction with polyamines, in which the nitrogen atoms are positively charged at neutral pH (20).In other members of the Kir family, some of the electronegative residues are replaced by neutral ones, such as Gly and Ser. Although the total number of acidic residues correlates with the strength of inward rectification, the correlation cannot be completely explained for the strong rectifiers (9). In Kir3.1/GIRK1, which exhibits relatively strong inward rectification among the Kir family proteins, two of the four important acidic residues in Kir2.1 (Glu-224 and Asp-255) are replaced by Ser (Ser-225 and Ser-256 in Kir3.1, respectively). This suggests that the binding site(s) and stoichiometry of polyamine binding differ among the Kir proteins.Although the binding of polyamines to the cytoplasmic pore of Kirs is considered to be required for the blockade of the transmembrane pore to enable the inward rectification (16, 19, 21), the functional role of the polyamine binding to the cytoplasmic pore is still unclear. In particular, Kir3/GIRK is activated by the binding of G-protein βγ-subunits (Gβγ) to the cytoplasmic pore through the conformational rearrangement of the channel (22). Thus, the elucidation of the binding mode of Kir and polyamines based on the detection of their direct interaction as well as the effects of the binding on the protein conformation provides insights into the functional roles of the cytoplasmic pore in the gating and the inward rectifying property of the channel.Here, we report the thermodynamic and structural analyses of the interaction between spermine and the intracellular regions of Kir3.1/GIRK1. Our isothermal titration calorimetry (ITC) results indicated that two spermine molecules bind to a tetramer of Kir3.1/GIRK1, with a dissociation constant (Kd) value of 26 μm. NMR analyses together with ITC results revealed the spermine binding mode, in which one spermine molecule bridges two Asp-260 side chains of two adjacent subunits, with the alteration of the relative orientations of the four subunits. The spermine binding mode revealed here suggests the functional roles of the spermine binding to the cytoplasmic pore: in the resting state of the channel, spermine stabilizes a certain channel conformation, and upon activation, spermine is dissociated from the cytoplasmic pore through the Gβγ-induced conformational rearrangement, leading to rapid translocation to the transmembrane pore to block the outward K+ current.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号