首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   823篇
  免费   43篇
  国内免费   1篇
  867篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   11篇
  2017年   7篇
  2016年   7篇
  2015年   19篇
  2014年   28篇
  2013年   57篇
  2012年   46篇
  2011年   44篇
  2010年   22篇
  2009年   26篇
  2008年   47篇
  2007年   51篇
  2006年   41篇
  2005年   76篇
  2004年   56篇
  2003年   49篇
  2002年   60篇
  2001年   16篇
  2000年   16篇
  1999年   20篇
  1998年   11篇
  1997年   14篇
  1996年   10篇
  1995年   10篇
  1994年   9篇
  1993年   2篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   2篇
  1986年   10篇
  1985年   6篇
  1984年   5篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1976年   3篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有867条查询结果,搜索用时 0 毫秒
11.
A streptococcal preparation OK-432 is reported to be an immunopotentiator and a potent antitumor agent. In order to elucidate the mechanism of biologic action, effects of OK-432 on arachidonic acid metabolism in rat peritoneal macrophages were investigated. Prostaglandin E2 production and release of radioactivity from [3H]arachidonic acid-labeled macrophages were found to be stimulated by OK-432 in a concentration-dependent manner (5 to 80 micrograms/ml). Heat-treatment of OK-432 further stimulated its effects. These stimulative effects on arachidonic acid metabolism by OK-432 were not observed in MDCK cells that have no phagocytotic activity. Furthermore, cytochalasin B treatment completely suppressed the stimulative effects induced by OK-432 in macrophages. These results strongly indicate that the stimulative effects by OK-432 on arachidonic acid metabolism are dependent on phagocytosis of OK-432 particles. Significance of stimulation of arachidonic acid metabolism in macrophages by OK-432 for its biological effects is discussed.  相似文献   
12.
We have analyzed in transgenic tobacco the expression of a chimeric gene containing 5 sequences of the rice rab-16B gene fused to the -glucuronidase (GUS) reporter gene. This construct, a translational fusion (–482 to +184) including 14 amino acids of the RAB-16B protein, is expressed only in zygotic and pollen-derived embryos. In zygotic embryos, GUS activity begins to accumulate 10 days after flowering (daf), and increases until seed maturation at 25 daf. Immunological measurements of endogenous abscisic acid (ABA) accumulation in these seeds showed a close parallel between hormone levels and GUS activity. However, GUS activity could not be reproducibly induced by treatment of immature embryos with ABA (10 M). Neither GUS activity nor GUS mRNA could be detected in leaves of transgenic tobacco even after ABA treatment. In contrast, GUS activity could be induced to high levels in pollen-derived embryos by treatment with ABA. Our results show that 482 bp of 5 sequences of the rice rab-16B promoter can confer in transgenic tobacco developmentally regulated expression in embryos but not ABA-responsive expression in vegetative tissues.  相似文献   
13.
14.
The nucleotide sequences of rbcL genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were determined from six species of Prymnesiophyta to clarify their phylogenetic relationships. Molecular phylogenetic trees were constructed using PAUP (Phylogenetic Analysis Using Parsimony). These analyses suggest that the Prymnesiophyta, except for the Pavlovales, area relatively stable monophyletic group. Pleurochrysis carterae, included in the Isochrysidales, is a sister species of a monophyletic group consisting of other members of the Isochrysidales, Gephyrocapsa oceanica and Emiliania huxleyi, members of the Coccosphaerales, Calyptrosphaera sphaeroidea and Umbilicosphaera sibogae var. foliosa, and a member of the Prymnesiales, Chrysochromulina hirta. The nucleotide sequence of rbcL from G. oceanica was identical to that from E. huxleyi within the region examined. Our trees show that G. oceanica and E. huxleyi are more closely related to C. hirta than to U. sibogae, C. sphaeroidea, and P. carterae. These results suggest that orders in the Prymnesiophyceae, including the above-mentioned genera, should be redefined.  相似文献   
15.
16.
PCR was used to isolate a carboxypeptidase Y (CPY) homolog gene from the fission yeast Schizosaccharomyces pombe. The cloned S. pombe cpy1+ gene has a single open reading frame, which encodes 950 amino acids with one potential N-glycosylation site. It appears to be synthesized as an inactive pre-pro protein that likely undergoes processing following translocation into appropriate intracellular organelles. The C-terminal mature region is highly conserved in other serine carboxypeptidases. In contrast, the N-terminal pro region containing the vacuolar sorting signal in CPY from Saccharomyces cerevisiae shows fewer identical residues. The pro region contains two unusual repeating sequences; repeating sequence I consists of seven contiguous repeating segments of 13 amino acids each, and repeating sequence II consists of seven contiguous repeating segments of 9 amino acids each. Pulse-chase radiolabeling analysis revealed that Cpy1p was initially synthesized in a 110-kDa pro-precursor form and via the 51-kDa single-polypeptide-chain intermediate form which has had its pro segment removed is finally converted to a heterodimer, the mature form, which is detected as a 32-kDa protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Like S. cerevisiae CPY, S. pombe Cpy1p does not require the N-linked oligosaccharide moiety for vacuolar delivery. To investigate the vacuolar sorting signal of S. pombe Cpy1p, we have constructed cpy1+-SUC2 gene fusions that direct the synthesis of hybrid proteins consisting of N-terminal segments of various lengths of S. pombe Cpy1p fused to the secreted enzyme S. cerevisiae invertase. The N-terminal 478 amino acids of Cpy1 are sufficient to direct delivery of a Cpy1-Inv hybrid protein to the vacuole. These results showed that the pro peptide of Cpy1 contains the putative vacuolar sorting signal.  相似文献   
17.
18.
A two-photon absorbing (2PA) and aggregation-enhanced near-infrared (NIR) emitting pyran derivative, encapsulated in and stabilized by silica nanoparticles (SiNPs), is reported as a nanoprobe for two-photon fluorescence microscopy (2PFM) bioimaging that overcomes the fluorescence quenching associated with high chromophore loading. The new SiNP probe exhibited aggregate-enhanced emission producing nearly twice as strong a signal as the unaggregated dye, a 3-fold increase in two-photon absorption relative to the DFP in solution, and approximately 4-fold increase in photostability. The surface of the nanoparticles was functionalized with a folic acid (FA) derivative for folate-mediated delivery of the nanoprobe for 2PFM bioimaging. Surface modification of SiNPs with the FA derivative was supported by zeta potential variation and (1)H NMR spectral characterization of the SiNPs as a function of surface modification. In vitro studies using HeLa cells expressing a folate receptor (FR) indicated specific cellular uptake of the functionalized nanoparticles. The nanoprobe was demonstrated for FR-targeted one-photon in vivo imaging of HeLa tumor xenograft in mice upon intravenous injection of the probe. The FR-targeting nanoprobe not only exhibited highly selective tumor targeting but also readily extravasated from tumor vessels, penetrated into the tumor parenchyma, and was internalized by the tumor cells. Two-photon fluorescence microscopy bioimaging provided three-dimensional (3D) cellular-level resolution imaging up to 350 μm deep in the HeLa tumor.  相似文献   
19.
The transition from the vegetative rosette stage to the reproductive growth stage (bolting) in the rosette plant Eustoma grandiflorum has a strict requirement for vernalization, a treatment that causes oxidative stress. Since we have shown that reduced glutathione (GSH) and its biosynthesis are associated with bolting in another rosette plant Arabidopsis thaliana, we here investigated whether a similar mechanism governs the vernalization-induced bolting of E. grandiflorum. Addition of GSH or its precursor cysteine, instead of vernalization, induced bolting but other thiols, dithiothreitol and 2-mercaptoethanol, did not. The inductive effect of vernalization on bolting was nullified by addition of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, without decreasing the plant growth rate. BSO-mediated inhibition of bolting was reversed by addition of GSH but not by cysteine. These indicate that vernalization-induced bolting involves GSH biosynthesis and is specifically regulated by GSH. Plant GSH increased during the early vernalization period along with the activity of gamma-glutamylcysteine synthetase that catalyzes the first step of GSH biosynthesis, although there was little change in amounts of GSH precursor thiols, cysteine and gamma-glutamylcysteine. These findings strongly suggest that vernalization stimulates GSH synthesis and synthesized GSH specifically determines the bolting time of E. grandiflorum.  相似文献   
20.
Myostatin, which is a member of the TGF-beta superfamily, is a negative regulator of skeletal muscle formation. Double-muscled Piedmontese cattle have a C313Y mutation in myostatin and show increased skeletal muscle mass which resulted from an increase of myofiber number (hyperplasia) without that of myofiber size (hypertrophy). To examine whether this mutation in myostatin gene affects muscle development in a dominant negative manner, we generated transgenic mice overexpressing the mutated gene. The transgenic mice exhibited dramatic increases in the skeletal muscle mass resulting from hyperplasia without hypertrophy. In contrast, it has been reported that a myostatin mutated at its cleavage site produces hypertrophy without hyperplasia in the muscle. Thus, these results suggest that (1) the myostatin containing the missense mutation exhibits a dominant negative activity and that (2) there are two types in the dominant negative form of myostatin, causing either hypertrophy or hyperplasia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号