首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   30篇
  国内免费   1篇
  831篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   12篇
  2017年   4篇
  2016年   12篇
  2015年   24篇
  2014年   41篇
  2013年   58篇
  2012年   52篇
  2011年   44篇
  2010年   22篇
  2009年   25篇
  2008年   43篇
  2007年   48篇
  2006年   43篇
  2005年   74篇
  2004年   52篇
  2003年   47篇
  2002年   55篇
  2001年   6篇
  2000年   17篇
  1999年   10篇
  1998年   14篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1973年   3篇
  1972年   2篇
  1970年   4篇
  1967年   1篇
排序方式: 共有831条查询结果,搜索用时 15 毫秒
791.
Pathological characterization of autopsied tissues from patients with SARS revealed severe damage in restricted tissues, such as lung, with no apparent cell damage in other tissues, such as intestine and brain. Here, we examined the susceptibility of neural cell lines of human (OL) and rat (C6) origins to SARS-associated coronavirus. Both of the neural cell lines showed no apparent cytopathic effects (CPE) by infection but produced virus with infectivity of 10(2-5) per ml, in sharp contrast to the production by infected Vero E6 cells of >10(9) per ml that showed a lytic infection with characteristic rounding CPE. Interestingly, the infection of intestinal cell line CaCo-2 also induced no apparent CPE, with production of the virus at a slightly lower level as that of the Vero E6 cell culture. Notably, the cellular receptor for the virus, angiotensin-converting enzyme 2 was expressed at similar levels on Vero E6 and CaCo-2 cells, but at undetectable levels on OL and C6 cells.  相似文献   
792.
HTm4 is a member of a newly defined family of human and murine proteins, the MS4 (membrane-spanning four) protein group, which has a distinctive four-transmembrane structure. MS4 protein functions include roles as cell surface signaling receptors and intracellular adapter proteins. We have previously demonstrated that HTm4 regulates the function of the KAP phosphatase, a key regulator of cell cycle progression. In humans, the expression of HTm4 is largely restricted to cells of the hematopoietic lineage, possibly reflecting a causal role for this molecule in differentiation/proliferation of hematopoietic lineage cells. In this study, we show that, like the human homologue, murine HTm4 is also predominantly a hematopoietic protein with distinctive expression patterns in developing murine embryos and in adult animals. In addition, we observed that murine HTm4 is highly expressed in the developing and adult murine nervous system, suggesting a previously unrecognized role in central and peripheral nervous system development.JLK and XY contributed equally to this work  相似文献   
793.
Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that are distributed throughout the brain and play important roles in regulation of synaptic efficacy. Some studies report that mGluRs heterologously expressed in nonneuronal cells are sensitive not only to glutamate but also to extracellular Ca2+ (Ca o 2+ ). We studied the Ca o 2+ -sensitivity of native mGluRs in mammalian central neurons. In cerebellar Purkinje cells that naturally express type-1 mGluR (mGluR1), physiological levels of Ca o 2+ (around 2 mM) activate mGluR1-mediated intracellular Ca2+ mobilization. The activation of the native mGluR1 response to Ca o 2+ appears to be slower than that to glutamate. Ca o 2+ (2 mM) also augments glutamate analog-evoked, native mGluR1-mediated inward cation current and intracellular Ca o 2+ mobilization. Detailed analysis of this effect suggests that Ca o 2+ modulates the glutamate responsiveness of native and heterologously expressed mGluR1s in different manners. These findings suggest that Ca o 2+ may enhance the basal level and glutamate responsiveness of neuronal mGluR signaling in vivo.  相似文献   
794.
We designed and synthesized novel retinoid X receptor (RXR)-selective antagonists bearing a carborane moiety. Compounds 8a-d or 9a-d themselves have no differentiation-inducing activity toward HL-60 cells and no inhibitory activity towards a retinoic acid receptor (RAR) agonist. However, they inhibit the synergistic activity of an RXR agonist, PA024, in the presence of Am80 on the cell differentiation of HL-60. Transactivation assay using RARs and RXRs suggested that the inhibitory activity of 9b resulted from the selective antagonism at the RXR site of RXR-RAR heterodimers.  相似文献   
795.
A new mutant, the Wakayama epileptic rat (WER), exhibiting both spontaneous absence-like behavior and tonic-clonic convulsions, was identified in a colony of Wistar rats. To determine clear seizure characteristics of this mutant strain, we analyzed the mode of inheritance of the convulsion and observed patterns of electroencephalogram (EEG) during the seizures. F1 progeny were produced between the founder male and normal females of the same colony. Animals were monitored through the inbreeding course to analyze genetic control of epileptic behavior. EEGs were recorded using affected animals in the F3-4 and post F13 generations. After the F2 generation, affected rats spontaneously exhibited both absence-like immobile behavior and tonic-clonic convulsions. The absence-like seizures were characterized by motor arrest and head droop. The tonic-clonic convulsions began with neck and forelimb clonus, wild jumping/running, and opisthotonic posturing, and evolved to tonic, then clonic convulsions. Most convulsion onsets occurred between 25-70 days of age. Mating experiments revealed that 0%(0/18) of the animals in F1, 10%(3/26) in F2, 17%(1/6) in backcross progeny and 86% (100/116) in progeny of crosses between epileptic rats showed tonic-clonic convulsions. Ictal cortical EEGs were characterized by 4-6 (5.1 +/- 0.4, mean +/- SD) Hz spike-and-wave complexes in the absence-like seizures and by low-voltage fast waves in the tonic-clonic convulsions. This new mutant rat spontaneously exhibited both absence-like and tonic-clonic seizures. The tonic-clonic seizure was inherited as an autosomal recessive trait with 86% incidence. Thus, the new mutant rat may become a useful model for studying human inherited epilepsies.  相似文献   
796.
IL-8 is produced by various cells, and the NH2-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH2-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH2-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg5 and Ser6, which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.  相似文献   
797.
Copper accumulation and induction of DNA strand breaks were investigated in the brain of Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson disease that is a heritable disease of copper accumulation and copper toxicity in the liver, kidney and brain. Copper contents in the brain of LEC rats increased from 20 weeks of age and were approximately 3.5 to 6 folds higher than those in the brain of WKAH rats at 24 weeks of age. Hepatic copper contents in LEC rats increased from 4 to 12 weeks of age in an age-dependent manner, and then decreased from 16 to 20 weeks of age. Thus, we consider that copper accumulated in the liver was released from severely damaged hepatocytes and deposited in the brain, although copper contents in the brain were 1/20-fold lower than those in the liver. We also evaluated the amounts of DNA single-strand breaks (SSBs) in the brain by comet analysis. The proportions of nuclei in the cerebrum and cerebellum without DNA damage decreased, and nuclei with severe DNA damage appeared in LEC rats at 24 weeks of age. The comet scores of cerebrum and cerebellum cells significantly increased in LEC rats and were significantly higher than those in WKAH rats at 24 weeks of age. The results show that SSBs in LEC rat brain cells are induced at a lower concentration of copper than are SSBs in hepatic cells.  相似文献   
798.
6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.  相似文献   
799.
Chronic myelogenous leukemia (CML) begins with an indolent chronic phase, and subsequently progresses to an accelerated or blastic phase. Although several genes are known to be involved in the progression to blastic phase, molecular mechanisms for the evolution toward blast crisis have not been fully identified. Oncogenic stimuli enforce cell proliferation, which requires DNA replication. Unscheduled DNA replication enforced by oncogenic stimuli leads to double strand breaks on DNA. We found the DNA damage-response pathway is activated in bone marrow of chronic-phase CML patients possibly due to an enforced proliferation signal by BCR-ABL expression. Since ataxia telangiectasia mutated (ATM) is a central player of the DNA damage-response pathway, we studied whether loss of this pathway accelerates blast crisis. We crossed Atm-knockout mice with BCR-ABL transgenic mice to test this hypothesis. Interestingly, the loss of one of the Atm alleles was shown to be enough for the acceleration of the blast crisis, which is supported by the finding of increased genomic instability as assayed by breakage–fusion–bridge (BFB) cycle formation. In light of these findings, the DNA damage-response pathway plays a vital role for determination of susceptibility to blast crisis in CML.  相似文献   
800.
Approximately 17% of the human genome is comprised of long interspersed nuclear element 1 (LINE-1, L1) non-LTR retrotransposons. L1 retrotransposition is known to be the cause of several genetic diseases, such as hemophilia A, Duchene muscular dystrophy, and so on. The L1 retroelements are also able to cause colon cancer, suggesting that L1 transposition could occur not only in germ cells, but also in somatic cells if innate immunity would not function appropriately. The mechanisms of L1 transposition restriction in the normal cells, however, are not fully defined. We here show that antiretroviral innate proteins, human APOBEC3 (hA3) family members, from hA3A to hA3H, differentially reduce the level of L1 retrotransposition that does not correlate either with antiviral activity against Vif-deficient HIV-1 and murine leukemia virus, or with patterns of subcellular localization. Importantly, hA3G protein inhibits L1 retrotransposition, in striking contrast to the recent reports. Inhibitory effect of hA3 family members on L1 transposition might not be due to deaminase activity, but due to novel mechanism(s). Thus, we conclude that all hA3 proteins act to differentially suppress uncontrolled transposition of L1 elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号