首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   30篇
  国内免费   1篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   12篇
  2017年   4篇
  2016年   12篇
  2015年   24篇
  2014年   41篇
  2013年   58篇
  2012年   52篇
  2011年   44篇
  2010年   22篇
  2009年   25篇
  2008年   43篇
  2007年   48篇
  2006年   43篇
  2005年   74篇
  2004年   52篇
  2003年   47篇
  2002年   55篇
  2001年   6篇
  2000年   17篇
  1999年   10篇
  1998年   14篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1973年   3篇
  1972年   2篇
  1970年   4篇
  1967年   1篇
排序方式: 共有831条查询结果,搜索用时 15 毫秒
31.

Background

As the World Health Organization grading system for gastroenteropancreatic-neuroendocrine tumors (GEP-NETs) may not always correlate with tumor progression, it is imperative that other independent predictors of tumor progression be established. To identify such predictors, we conducted a retrospective histopathological study of hindgut NETs, obtained from endoscopic procedures, and used statistical analyses to evaluate predictive factors.

Methods

We first obtained clinicopathological data of cases of hindgut NETs. Tissue sections from tumor samples were prepared and subjected to pathological examination. In particular, we calculated the microvessel density (MVD) and lymphatic microvessel density (LMVD) values, and performed appropriate statistical analyses.

Results

A total of 42 cases of hindgut NETs were selected for the study, 41 from the rectum and 1 from the sigmoid colon. Based on the Ki-67 labeling index, 34 cases were classified as NET G1 tumors and 8 as NET G2 tumors. MVD values ranged from 1.4/mm2 to 73.9/mm2 and LMVD values from 0/mm2 to 22.9/mm2. MVD and LMVD were identified as risk factors for venous and lymphatic invasion of hindgut NETs. Moreover, MVD positively correlated with the maximum diameter of the tumor.

Conclusions

Tumor progression of NETs may cause angiogenesis and lymphangiogenesis, via an unknown mechanism, as well as lymphovascular invasion. Angiogenesis likely plays an important role in occurrence and progression in the initial phase of hindgut NETs.
  相似文献   
32.
Itoh M  Yu S  Watanabe TK  Yamamoto MT 《Genetica》1999,106(3):223-229
To examine whether structural and functional differences exist in the proliferation disrupter (prod) genes between Drosophila simulans and D. melanogaster, we analyzed and compared both genes. The exon–intron structure of the genes was found to be the same – three exons were interrupted by two introns, although a previous report suggested that only one intron existed in D. melanogaster. The prod genes of D. simulans and D. melanogaster both turn out to encode 346 amino acids, not 301 as previously reported for D. melanogaster. The numbers of nucleotide substitutions in the prod genes was 0.0747 ±  per synonymous site and 0.0116 ± 0.0039 per replacement site, both comparable to those previously known for homologous genes between D. simulans and D. melanogaster. Genetic analysis demonstrated that D. simulans PROD can compensate for a deficiency of D. melanogaster PROD in hybrids. The PRODs of D. simulans and D. melanogaster presumably share the same function and a conserved working mechanism. The prod gene showed no significant interaction with the lethality of the male hybrid between these species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
33.
Several recent studies have suggested that nitric oxide (NO) derived from the inducible isoform of NO synthase (NOS) may act as an endogenous modulator of the inflammatory response by inhibiting adhesion of leukocytes to endothelial cells in vitro. Few studies have addressed specifically the role of iNOS in regulating leukocyte recruitment in vivo in a model of acute inflammation. Thus, the objective of this study was to assess the role of iNOS in modulating neutrophil (PMN) extravasation in an oyster glycogen-induced model of acute peritonitis in rats. Data obtained in the present study demonstrates that injection (IP) of oyster glycogen induces massive and selective PMN recruitment into the peritoneal cavity of rats at 6 hrs following OG administration. These extravasated cells were found to contain significant amounts of iNOS protein as assessed by Western blot analysis. Treatment of rats with the selective iNOS inhibitor L-iminoethyl-lysine (L-NIL) dramatically reduced NO levels in lavage fluid as measured by decreases in nitrate and nitrite concentrations without significantly affecting iNOS protein levels. Although L-NIL inhibited NO production by >70%, it did not alter oyster glycogen-induced PMN recruitment when compared to vehicle-treated rats. We conclude that PMN-associated, iNOS-derived NO does not play an important role in modulating extravasation of these leukocytes in this model of acute inflammation.  相似文献   
34.
The transition from the vegetative rosette stage to the reproductive growth stage (bolting) in the rosette plant Eustoma grandiflorum has a strict requirement for vernalization, a treatment that causes oxidative stress. Since we have shown that reduced glutathione (GSH) and its biosynthesis are associated with bolting in another rosette plant Arabidopsis thaliana, we here investigated whether a similar mechanism governs the vernalization-induced bolting of E. grandiflorum. Addition of GSH or its precursor cysteine, instead of vernalization, induced bolting but other thiols, dithiothreitol and 2-mercaptoethanol, did not. The inductive effect of vernalization on bolting was nullified by addition of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, without decreasing the plant growth rate. BSO-mediated inhibition of bolting was reversed by addition of GSH but not by cysteine. These indicate that vernalization-induced bolting involves GSH biosynthesis and is specifically regulated by GSH. Plant GSH increased during the early vernalization period along with the activity of gamma-glutamylcysteine synthetase that catalyzes the first step of GSH biosynthesis, although there was little change in amounts of GSH precursor thiols, cysteine and gamma-glutamylcysteine. These findings strongly suggest that vernalization stimulates GSH synthesis and synthesized GSH specifically determines the bolting time of E. grandiflorum.  相似文献   
35.
Borate ester cross-linking of the cell wall pectic polysaccharide rhamnogalacturonan II (RG-II) is required for the growth and development of angiosperms and gymnosperms. Here, we report that the amounts of borate cross-linked RG-II present in the sporophyte primary walls of members of the most primitive extant vascular plant groups (Lycopsida, Filicopsida, Equisetopsida, and Psilopsida) are comparable with the amounts of RG-II in the primary walls of angiosperms. By contrast, the gametophyte generation of members of the avascular bryophytes (Bryopsida, Hepaticopsida, and Anthocerotopsida) have primary walls that contain small amounts (approximately 1% of the amounts of RG-II present in angiosperm walls) of an RG-II-like polysaccharide. The glycosyl sequence of RG-II is conserved in vascular plants, but these RG-IIs are not identical because the non-reducing L-rhamnosyl residue present on the aceric acid-containing side chain of RG-II of all previously studied plants is replaced by a 3-O-methyl rhamnosyl residue in the RG-IIs isolated from Lycopodium tristachyum, Ceratopteris thalictroides, Platycerium bifurcatum, and Psilotum nudum. Our data indicate that the amount of RG-II incorporated into the walls of plants increased during the evolution of vascular plants from their bryophyte-like ancestors. Thus, the acquisition of a boron-dependent growth habit may be correlated with the ability of vascular plants to maintain upright growth and to form lignified secondary walls. The conserved structures of pteridophyte, lycophyte, and angiosperm RG-IIs suggests that the genes and proteins responsible for the biosynthesis of this polysaccharide appeared early in land plant evolution and that RG-II has a fundamental role in wall structure.  相似文献   
36.
Cyclooxygenase-2 (COX-2), the rate-limiting enzyme for prostanoid biosynthesis, plays a key role in gastrointestinal carcinogenesis. Among various prostanoids, prostaglandin E2 (PGE2) appears to be most responsible for cancer development. To investigate the role of PGE2 in gastric tumorigenesis, we constructed transgenic mice simultaneously expressing COX-2 and microsomal prostaglandin E synthase (mPGES)-1 in the gastric epithelial cells. The transgenic mice developed metaplasia, hyperplasia and tumorous growths in the glandular stomach with heavy macrophage infiltrations. Although gastric bacterial counts in the transgenic mice were within the normal range, treatment with antibiotics significantly suppressed activation of the macrophages and tumorous hyperplasia. Importantly, the antibiotics treatment did not affect the macrophage accumulation. Notably, treatment of the transgenic mice with lipopolysaccharides induced proinflammatory cytokines through Toll-like receptor 4 in the gastric epithelial cells. These results indicate that an increased level of PGE2 enhances macrophage infiltration, and that they are activated through epithelial cells by the gastric flora, resulting in gastric metaplasia and tumorous growth. Furthermore, Helicobacter infection upregulated epithelial PGE2 production, suggesting that the COX-2/mPGES-1 pathway contributes to the Helicobacter-associated gastric tumorigenesis.  相似文献   
37.
Reactive oxygen species (ROS) are released into the alveolar space and contribute to alveolar epithelial damage in patients with acute lung injury. However, the role of ROS in alveolar repair is not known. We studied the effect of ROS in our in vitro wound healing model using either human A549 alveolar epithelial cells or primary distal lung epithelial cells. We found that H(2)O(2) inhibited alveolar epithelial repair in a concentration-dependent manner. At similar concentrations, H(2)O(2) also induced apoptosis, an effect seen particularly at the edge of the wound, leading us to hypothesize that apoptosis contributes to H(2)O(2)-induced inhibition of wound repair. To learn the role of apoptosis, we blocked caspases with the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). In the presence of H(2)O(2), zVAD inhibited apoptosis, particularly at the wound edge and, most importantly, maintained alveolar epithelial wound repair. In H(2)O(2)-exposed cells, zVAD also maintained cell viability as judged by improved cell spreading and/or migration at the wound edge and by a more normal mitochondrial potential difference compared with cells not treated with zVAD. In conclusion, H(2)O(2) inhibits alveolar epithelial wound repair in large part by induction of apoptosis. Inhibition of apoptosis can maintain wound repair and cell viability in the face of ROS. Inhibiting apoptosis may be a promising new approach to improve repair of the alveolar epithelium in patients with acute lung injury.  相似文献   
38.
39.
Trimeresurus flavoviridis (Crotalinae) snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima, and Okinawa. Affinity and conventional chromatographies of Amami-Oshima T. flavoviridis venom led to isolation of a novel phospholipase A2 (PLA2). This protein was highly homologous (91%) in sequence to trimucrotoxin, a neurotoxic PLA2, which had been isolated from T. mucrosquamatus (Taiwan) venom, and exhibited weak neurotoxicity. This protein was named PLA-N. Its LD50 for mice was 1.34 µg/g, which is comparable to that of trimucrotoxin. The cDNA encoding PLA-N was isolated from both the Amami-Oshima and the Tokunoshima T. flavoviridis venom-gland cDNA libraries. Screening of the Okinawa T. flavoviridis venom-gland cDNA library with PLA-N cDNA led to isolation of the cDNA encoding one amino acid-substituted PLA-N homologue, named PLA-N(O), suggesting that interisland mutation occurred and that Okinawa island was separated from a former island prior to dissociation of Amami-Oshima and Tokunoshima islands. Construction of a phylogenetic tree of Crotalinae venom group II PLA2s based on the amino acid sequences revealed that neurotoxic PLA2s including PLA-N and PLA-N(O) form an independent cluster which is distant from other PLA2 groups such as PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Comparison of the nucleotide sequence of PLA-N cDNA with those of the cDNAs encoding other T. flavoviridis venom PLA2s showed that they have evolved in an accelerated manner. However, when comparison was made within the cDNAs encoding Crotalinae venom neurotoxic PLA2s, their evolutionary rates appear to be reduced to a level between accelerated evolution and neutral evolution. It is likely that ancestral genes of neurotoxic PLA2s evolved in an accelerated manner until they had acquired neurotoxic function and since then they have evolved with less frequent mutation, possibly for functional conservation. The nucleotide sequences reported in this paper are available from the GenBank/EMBL/DDBJ databases under accession numbers AB102728 and AB102729.  相似文献   
40.
Aryl hydrocarbons such as dioxins, polychlorinated biphenyls and polyaromatic hydrocarbons bind to the cellular aryl hydrocarbon receptor (AhR) in the initial step of their metabolism. The activation of intracellular signaling subsequent to the AhR binding is highly correlated with the toxicity and carcinogenicity of these chemicals. We produced Saccharomyces cerevisiae coexpressing mouse AhR and aryl hydrocarbon receptor nuclear translocator (Arnt) protein in accordance with Miller III's method for constructing yeasts with human Ahr and Arnt [Toxicol. Appl. Pharmacol. 160 (1998) 297]. Ligand treatment induced a dose-dependent increase in beta-galactosidase activity from a reporter plasmid in the yeast. Then, we compared activities of several ligands in yeast having the mouse Ahr/Arnt genes with those in yeast having the human genes, both of which have the same genetic background. There was no significant difference in the EC50 values of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo[a]pyrene, 3-methylcholanthrene and beta-naphthoflavone between the mouse and human genes. However, indirubin, which was recently found in human urine as a potent AhR ligand [J. Biol. Chem. 276 (2001) 31475], had a 35-140 times higher EC50 value in the yeast with human genes than mouse genes. This difference might reflect species-specificity between mouse and human AhR/Arnt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号