首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   49篇
  2022年   3篇
  2021年   12篇
  2018年   5篇
  2017年   12篇
  2016年   16篇
  2015年   15篇
  2014年   23篇
  2013年   50篇
  2012年   44篇
  2011年   36篇
  2010年   17篇
  2009年   10篇
  2008年   24篇
  2007年   30篇
  2006年   47篇
  2005年   49篇
  2004年   49篇
  2003年   38篇
  2002年   52篇
  2001年   13篇
  2000年   5篇
  1999年   18篇
  1998年   11篇
  1997年   10篇
  1996年   11篇
  1995年   12篇
  1994年   8篇
  1993年   10篇
  1992年   7篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1985年   2篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1978年   3篇
  1976年   7篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1959年   1篇
排序方式: 共有721条查询结果,搜索用时 15 毫秒
181.
182.
Preface     
  相似文献   
183.
1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] induces osteoclast formation via induction of receptor activator of NF-κB ligand (RANKL, also called TNF-related activation-induced cytokine: TRANCE) in osteoblasts. In cocultures of mouse bone marrow cells and osteoblasts, 1,25(OH)2D3 induced osteoclast formation in a dose-dependent manner, with maximum osteoclast formation observed at concentrations greater than 10?9 M of 1,25(OH)2D3. In the presence of bone morphogenetic protein 2 (BMP-2), the maximum formation of osteoclasts was seen with lower concentrations of 1,25(OH)2D3 (greater than 10?11 M), suggesting that BMP-2 enhances osteoclast formation induced by 1,25(OH)2D3. In addition, the expressions of RANKL mRNA and proteins were induced by 1,25(OH)2D3 in osteoblasts, and further upregulated by BMP-2. In mouse bone marrow cell cultures without 1,25(OH)2D3, BMP-2 did not enhance osteoclast differentiation induced by recombinant RANKL and macrophage colony-stimulating factor (M-CSF), indicating that BMP-2 does not target osteoclast precursors. Furthermore, BMP-2 up-regulated the expression level of vitamin D receptor (VDR) in osteoblasts. These results suggest that BMP-2 regulates mouse osteoclast differentiation via upregulation of RANKL in osteoblasts induced by 1,25(OH)2D3.  相似文献   
184.
Rapid industrialization in East Asia is causing adverse effects due to atmospheric deposition in terrestrial and freshwater ecosystems. Decreasing stream pH and alkalinity and increasing NO3 ? concentrations were observed throughout the 1990s in the forested Lake Ijira catchment in central Japan. We investigated these changes using data on atmospheric deposition, soil chemistry, stream water chemistry, and forest growth. Average atmospheric depositions (wet + dry) of 0.83, 0.57, and 1.37 kmol ha?1 year?1 for hydrogen, sulfur, and nitrogen, respectively, were among the highest levels in Japan. Atmospheric deposition generally decreased before 1994 and increased thereafter. The catchment was acid-sensitive; stream alkalinity was low (134 μmolc l?1) and pH in surface mineral soils decreased from 4.5 in 1990 to 3.9 in 2003. Stream NO3 ? concentration nearly doubled (from 22 to 42 μmolc l?1) from the late 1980s to the early 2000s. Stream NO3 ? concentration was controlled primarily by water temperature before 1996/1997 and by stream discharge thereafter. Stream NO3 ? concentrations decreased during the growing season before 1996/1997, but this seasonality was lost thereafter. The catchment became nitrogen-saturated (changing from stage 1 to 2) in 1996/1997, possibly because of declining forest growth rates due to the 1994 summer drought, defoliation of Japanese red pine by pine wilt disease, maturation of Japanese cedar stands, and stimulation of nitrogen mineralization and nitrification due to alkalinization of soils (increased exchangeable Ca2+ and soil pH) after the summer drought. Stream pH and alkalinity began decreasing in 1996/1997. The enhanced growing-season NO3 ? discharge since 1996/1997 appeared to be the major cause of stream acidification. Increased atmospheric deposition since 1994 may have contributed to this change.  相似文献   
185.
Around 25% of proteins in living organisms are membrane proteins that perform many critical functions such as synthesis of biomolecules and signal transduction. Membrane proteins are extracted from the lipid bilayer and solubilized with a detergent for biochemical characterization; however, their solubilization is an empirical technique and sometimes insufficient quantities of proteins are solubilized in aqueous buffer to allow characterization. We found that addition of alkylamines and polyamines to solubilization buffer containing a detergent enhanced solubilization of membrane proteins from microsomes. The solubilization of polygalacturonic acid synthase localized at the plant Golgi membrane was enhanced by up to 9.9‐fold upon addition of spermidine to the solubilization buffer. These additives also enhanced the solubilization of other plant membrane proteins localized in other organelles such as the endoplasmic reticulum and plasma membrane as well as that of an animal Golgi‐localized membrane protein. Thus, addition of alkylamines and polyamines to solubilization buffer is a generally applicable method for effective solubilization of membrane proteins. The mechanism of the enhancement of solubilization is discussed.  相似文献   
186.
187.
The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium.  相似文献   
188.
189.
The tumor necrosis factor family ligand, tumor necrosis factor-related activation-induced cytokine (TRANCE), and its receptors, receptor activator of nuclear factor-kappaB (RANK) and osteoprotegerin (OPG), are known to be regulators of development and activation of osteoclasts in bone remodeling. Sustained osteoclast activation that occurs through TRANCE-RANK causes osteopenic disorders such as osteoporosis and contributes to osteolytic metastases. Here, we report a rationally designed small molecule mimic of osteoprotegerin to inhibit osteoclast formation in vitro and limit bone loss in an animal model of osteoporosis. One of the mimetics, OP3-4, significantly inhibited osteoclast formation in vitro (IC(50) = 10 microm) and effectively inhibited total bone loss in ovariectomized mice at a dosage of 2 mg/kg/day. Unlike soluble OPG receptors, which preclude TRANCE binding to RANK, OP3-4 shows the ability to modulate RANK-TRANCE signaling pathways and alters the biological functions of the RANK-TRANCE receptor complex by facilitating a defective receptor complex. These features suggest that OPG-derived small molecules can be used as a probe to understand complex biological functions of RANK-TRANCE-OPG receptors and also can be used as a platform to develop more useful therapeutic agents for inflammation and bone disease.  相似文献   
190.
The filamentous bacteriophage Pf3 consists of a covalently closed DNA single strand of 5833 nucleotides sheathed by approximately 2500 copies of a 44-residue capsid subunit. The capsid subunit contains a single tryptophan residue (Trp-38), which is located within the basic C-terminal sequence (-RWIKAQFF) and is essential for virion assembly in vivo. Polarized Raman microspectroscopy has been employed to determine the orientation of the Trp-38 side chain in the native virus structure. The polarized Raman measurements show that the plane of the indolyl ring is tilted by 17 degrees from the virion axis and that the indolyl pseudo-twofold axis is inclined at 46 degrees to the virion axis. Using the presently determined orientation of the indolyl ring and side-chain torsion angles, chi(1) (N-C(alpha)-C(beta)-C(gamma)) and chi(2,1) (C(alpha)-C(beta)-C(gamma)-C(delta1)), we propose a detailed molecular model for the local structure of Trp-38 in the Pf3 virion. The present Pf3 model is consistent with previously reported Raman, ultraviolet-resonance Raman and fluorescence results suggesting an unusual environment for Trp-38 in the virion assembly, probably involving an intrasubunit cation-pi interaction between the guanidinium moiety of Arg-37 and the indolyl moiety of Trp-38. Such a C-terminal Trp-38/Arg-37 interaction may be important for the stabilization of a subunit conformation that is required for binding to the single-stranded DNA genome during virion assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号